MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsval Structured version   Visualization version   GIF version

Theorem xpsdsval 22420
Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
xpsds.a (𝜑𝐴𝑋)
xpsds.b (𝜑𝐵𝑌)
xpsds.c (𝜑𝐶𝑋)
xpsds.d (𝜑𝐷𝑌)
Assertion
Ref Expression
xpsdsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem xpsdsval
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . . . 5 𝑋 = (Base‘𝑅)
3 xpsds.y . . . . 5 𝑌 = (Base‘𝑆)
4 xpsds.1 . . . . 5 (𝜑𝑅𝑉)
5 xpsds.2 . . . . 5 (𝜑𝑆𝑊)
6 eqid 2817 . . . . 5 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
7 eqid 2817 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2817 . . . . 5 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16457 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
101, 2, 3, 4, 5, 6, 7, 8xpslem 16458 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
116xpsff1o2 16456 . . . . 5 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
12 f1ocnv 6375 . . . . 5 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
14 ovexd 6918 . . . 4 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V)
15 eqid 2817 . . . 4 ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) = ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
16 xpsds.p . . . 4 𝑃 = (dist‘𝑇)
17 xpsds.m . . . . . 6 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
18 xpsds.n . . . . . 6 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
19 xpsds.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
20 xpsds.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
211, 2, 3, 4, 5, 16, 17, 18, 19, 20xpsxmetlem 22418 . . . . 5 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
22 ssid 3831 . . . . 5 ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
23 xmetres2 22400 . . . . 5 (((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) ∧ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
2421, 22, 23sylancl 576 . . . 4 (𝜑 → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
25 df-ov 6887 . . . . . 6 (𝐴(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐵) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩)
26 xpsds.a . . . . . . 7 (𝜑𝐴𝑋)
27 xpsds.b . . . . . . 7 (𝜑𝐵𝑌)
286xpsfval 16452 . . . . . . 7 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐵) = ({𝐴} +𝑐 {𝐵}))
2926, 27, 28syl2anc 575 . . . . . 6 (𝜑 → (𝐴(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐵) = ({𝐴} +𝑐 {𝐵}))
3025, 29syl5eqr 2865 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}))
31 opelxpi 5360 . . . . . . 7 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
3226, 27, 31syl2anc 575 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
33 f1of 6363 . . . . . . . 8 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
3411, 33ax-mp 5 . . . . . . 7 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
3534ffvelrni 6590 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
3632, 35syl 17 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
3730, 36eqeltrrd 2897 . . . 4 (𝜑({𝐴} +𝑐 {𝐵}) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
38 df-ov 6887 . . . . . 6 (𝐶(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐷) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩)
39 xpsds.c . . . . . . 7 (𝜑𝐶𝑋)
40 xpsds.d . . . . . . 7 (𝜑𝐷𝑌)
416xpsfval 16452 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (𝐶(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐷) = ({𝐶} +𝑐 {𝐷}))
4239, 40, 41syl2anc 575 . . . . . 6 (𝜑 → (𝐶(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐷) = ({𝐶} +𝑐 {𝐷}))
4338, 42syl5eqr 2865 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}))
44 opelxpi 5360 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
4539, 40, 44syl2anc 575 . . . . . 6 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
4634ffvelrni 6590 . . . . . 6 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
4745, 46syl 17 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
4843, 47eqeltrrd 2897 . . . 4 (𝜑({𝐶} +𝑐 {𝐷}) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
499, 10, 13, 14, 15, 16, 24, 37, 48imasdsf1o 22413 . . 3 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵}))𝑃((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷}))) = (({𝐴} +𝑐 {𝐵})((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))({𝐶} +𝑐 {𝐷})))
5037, 48ovresd 7041 . . 3 (𝜑 → (({𝐴} +𝑐 {𝐵})((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))({𝐶} +𝑐 {𝐷})) = (({𝐴} +𝑐 {𝐵})(dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))({𝐶} +𝑐 {𝐷})))
5149, 50eqtrd 2851 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵}))𝑃((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷}))) = (({𝐴} +𝑐 {𝐵})(dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))({𝐶} +𝑐 {𝐷})))
52 f1ocnvfv 6768 . . . . 5 (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
5311, 32, 52sylancr 577 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
5430, 53mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩)
55 f1ocnvfv 6768 . . . . 5 (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
5611, 45, 55sylancr 577 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
5743, 56mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩)
5854, 57oveq12d 6902 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐴} +𝑐 {𝐵}))𝑃((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐶} +𝑐 {𝐷}))) = (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩))
59 eqid 2817 . . . 4 (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
60 fvexd 6433 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
61 2on 7815 . . . . 5 2𝑜 ∈ On
6261a1i 11 . . . 4 (𝜑 → 2𝑜 ∈ On)
63 xpscfn 16444 . . . . 5 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
644, 5, 63syl2anc 575 . . . 4 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
6537, 10eleqtrd 2898 . . . 4 (𝜑({𝐴} +𝑐 {𝐵}) ∈ (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
6648, 10eleqtrd 2898 . . . 4 (𝜑({𝐶} +𝑐 {𝐷}) ∈ (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
67 eqid 2817 . . . 4 (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
688, 59, 60, 62, 64, 65, 66, 67prdsdsval 16363 . . 3 (𝜑 → (({𝐴} +𝑐 {𝐵})(dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))({𝐶} +𝑐 {𝐷})) = sup((ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ∪ {0}), ℝ*, < ))
69 df2o3 7820 . . . . . . . . . . 11 2𝑜 = {∅, 1𝑜}
7069rexeqi 3343 . . . . . . . . . 10 (∃𝑘 ∈ 2𝑜 𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ ∃𝑘 ∈ {∅, 1𝑜}𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)))
71 0ex 4997 . . . . . . . . . . 11 ∅ ∈ V
72 1oex 7814 . . . . . . . . . . 11 1𝑜 ∈ V
73 2fveq3 6423 . . . . . . . . . . . . 13 (𝑘 = ∅ → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘(({𝑅} +𝑐 {𝑆})‘∅)))
74 fveq2 6418 . . . . . . . . . . . . 13 (𝑘 = ∅ → (({𝐴} +𝑐 {𝐵})‘𝑘) = (({𝐴} +𝑐 {𝐵})‘∅))
75 fveq2 6418 . . . . . . . . . . . . 13 (𝑘 = ∅ → (({𝐶} +𝑐 {𝐷})‘𝑘) = (({𝐶} +𝑐 {𝐷})‘∅))
7673, 74, 75oveq123d 6905 . . . . . . . . . . . 12 (𝑘 = ∅ → ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)))
7776eqeq2d 2827 . . . . . . . . . . 11 (𝑘 = ∅ → (𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ 𝑥 = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅))))
78 2fveq3 6423 . . . . . . . . . . . . 13 (𝑘 = 1𝑜 → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜)))
79 fveq2 6418 . . . . . . . . . . . . 13 (𝑘 = 1𝑜 → (({𝐴} +𝑐 {𝐵})‘𝑘) = (({𝐴} +𝑐 {𝐵})‘1𝑜))
80 fveq2 6418 . . . . . . . . . . . . 13 (𝑘 = 1𝑜 → (({𝐶} +𝑐 {𝐷})‘𝑘) = (({𝐶} +𝑐 {𝐷})‘1𝑜))
8178, 79, 80oveq123d 6905 . . . . . . . . . . . 12 (𝑘 = 1𝑜 → ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜)))
8281eqeq2d 2827 . . . . . . . . . . 11 (𝑘 = 1𝑜 → (𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ 𝑥 = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜))))
8371, 72, 77, 82rexpr 4442 . . . . . . . . . 10 (∃𝑘 ∈ {∅, 1𝑜}𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ (𝑥 = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) ∨ 𝑥 = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜))))
8470, 83bitri 266 . . . . . . . . 9 (∃𝑘 ∈ 2𝑜 𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ (𝑥 = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) ∨ 𝑥 = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜))))
85 xpsc0 16445 . . . . . . . . . . . . . . 15 (𝑅𝑉 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
864, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
8786fveq2d 6422 . . . . . . . . . . . . 13 (𝜑 → (dist‘(({𝑅} +𝑐 {𝑆})‘∅)) = (dist‘𝑅))
88 xpsc0 16445 . . . . . . . . . . . . . 14 (𝐴𝑋 → (({𝐴} +𝑐 {𝐵})‘∅) = 𝐴)
8926, 88syl 17 . . . . . . . . . . . . 13 (𝜑 → (({𝐴} +𝑐 {𝐵})‘∅) = 𝐴)
90 xpsc0 16445 . . . . . . . . . . . . . 14 (𝐶𝑋 → (({𝐶} +𝑐 {𝐷})‘∅) = 𝐶)
9139, 90syl 17 . . . . . . . . . . . . 13 (𝜑 → (({𝐶} +𝑐 {𝐷})‘∅) = 𝐶)
9287, 89, 91oveq123d 6905 . . . . . . . . . . . 12 (𝜑 → ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) = (𝐴(dist‘𝑅)𝐶))
9317oveqi 6897 . . . . . . . . . . . . 13 (𝐴𝑀𝐶) = (𝐴((dist‘𝑅) ↾ (𝑋 × 𝑋))𝐶)
9426, 39ovresd 7041 . . . . . . . . . . . . 13 (𝜑 → (𝐴((dist‘𝑅) ↾ (𝑋 × 𝑋))𝐶) = (𝐴(dist‘𝑅)𝐶))
9593, 94syl5eq 2863 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘𝑅)𝐶))
9692, 95eqtr4d 2854 . . . . . . . . . . 11 (𝜑 → ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) = (𝐴𝑀𝐶))
9796eqeq2d 2827 . . . . . . . . . 10 (𝜑 → (𝑥 = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) ↔ 𝑥 = (𝐴𝑀𝐶)))
98 xpsc1 16446 . . . . . . . . . . . . . . 15 (𝑆𝑊 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
995, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
10099fveq2d 6422 . . . . . . . . . . . . 13 (𝜑 → (dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜)) = (dist‘𝑆))
101 xpsc1 16446 . . . . . . . . . . . . . 14 (𝐵𝑌 → (({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵)
10227, 101syl 17 . . . . . . . . . . . . 13 (𝜑 → (({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵)
103 xpsc1 16446 . . . . . . . . . . . . . 14 (𝐷𝑌 → (({𝐶} +𝑐 {𝐷})‘1𝑜) = 𝐷)
10440, 103syl 17 . . . . . . . . . . . . 13 (𝜑 → (({𝐶} +𝑐 {𝐷})‘1𝑜) = 𝐷)
105100, 102, 104oveq123d 6905 . . . . . . . . . . . 12 (𝜑 → ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜)) = (𝐵(dist‘𝑆)𝐷))
10618oveqi 6897 . . . . . . . . . . . . 13 (𝐵𝑁𝐷) = (𝐵((dist‘𝑆) ↾ (𝑌 × 𝑌))𝐷)
10727, 40ovresd 7041 . . . . . . . . . . . . 13 (𝜑 → (𝐵((dist‘𝑆) ↾ (𝑌 × 𝑌))𝐷) = (𝐵(dist‘𝑆)𝐷))
108106, 107syl5eq 2863 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘𝑆)𝐷))
109105, 108eqtr4d 2854 . . . . . . . . . . 11 (𝜑 → ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜)) = (𝐵𝑁𝐷))
110109eqeq2d 2827 . . . . . . . . . 10 (𝜑 → (𝑥 = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜)) ↔ 𝑥 = (𝐵𝑁𝐷)))
11197, 110orbi12d 933 . . . . . . . . 9 (𝜑 → ((𝑥 = ((({𝐴} +𝑐 {𝐵})‘∅)(dist‘(({𝑅} +𝑐 {𝑆})‘∅))(({𝐶} +𝑐 {𝐷})‘∅)) ∨ 𝑥 = ((({𝐴} +𝑐 {𝐵})‘1𝑜)(dist‘(({𝑅} +𝑐 {𝑆})‘1𝑜))(({𝐶} +𝑐 {𝐷})‘1𝑜))) ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷))))
11284, 111syl5bb 274 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ 2𝑜 𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷))))
113 vex 3405 . . . . . . . . 9 𝑥 ∈ V
114 eqid 2817 . . . . . . . . . 10 (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)))
115114elrnmpt 5587 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ↔ ∃𝑘 ∈ 2𝑜 𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
116113, 115ax-mp 5 . . . . . . . 8 (𝑥 ∈ ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ↔ ∃𝑘 ∈ 2𝑜 𝑥 = ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)))
117113elpr 4404 . . . . . . . 8 (𝑥 ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷)))
118112, 116, 1173bitr4g 305 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ↔ 𝑥 ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}))
119118eqrdv 2815 . . . . . 6 (𝜑 → ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
120119uneq1d 3976 . . . . 5 (𝜑 → (ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ∪ {0}) = ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ∪ {0}))
121 uncom 3967 . . . . 5 ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ∪ {0}) = ({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
122120, 121syl6eq 2867 . . . 4 (𝜑 → (ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ∪ {0}) = ({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}))
123122supeq1d 8601 . . 3 (𝜑 → sup((ran (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(dist‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) ∪ {0}), ℝ*, < ) = sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ))
124 0xr 10381 . . . . . 6 0 ∈ ℝ*
125124a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ*)
126125snssd 4541 . . . 4 (𝜑 → {0} ⊆ ℝ*)
127 xmetcl 22370 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) ∈ ℝ*)
12819, 26, 39, 127syl3anc 1483 . . . . 5 (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*)
129 xmetcl 22370 . . . . . 6 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝐷𝑌) → (𝐵𝑁𝐷) ∈ ℝ*)
13020, 27, 40, 129syl3anc 1483 . . . . 5 (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*)
131 prssi 4553 . . . . 5 (((𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ*)
132128, 130, 131syl2anc 575 . . . 4 (𝜑 → {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ*)
133 xrltso 12210 . . . . . 6 < Or ℝ*
134 supsn 8627 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
135133, 124, 134mp2an 675 . . . . 5 sup({0}, ℝ*, < ) = 0
136 supxrcl 12383 . . . . . . 7 ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
137132, 136syl 17 . . . . . 6 (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
138 xmetge0 22383 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → 0 ≤ (𝐴𝑀𝐶))
13919, 26, 39, 138syl3anc 1483 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑀𝐶))
140 ovex 6916 . . . . . . . 8 (𝐴𝑀𝐶) ∈ V
141140prid1 4499 . . . . . . 7 (𝐴𝑀𝐶) ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}
142 supxrub 12392 . . . . . . 7 (({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* ∧ (𝐴𝑀𝐶) ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}) → (𝐴𝑀𝐶) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
143132, 141, 142sylancl 576 . . . . . 6 (𝜑 → (𝐴𝑀𝐶) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
144125, 128, 137, 139, 143xrletrd 12231 . . . . 5 (𝜑 → 0 ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
145135, 144syl5eqbr 4890 . . . 4 (𝜑 → sup({0}, ℝ*, < ) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
146 supxrun 12384 . . . 4 (({0} ⊆ ℝ* ∧ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* ∧ sup({0}, ℝ*, < ) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) → sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
147126, 132, 145, 146syl3anc 1483 . . 3 (𝜑 → sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
14868, 123, 1473eqtrd 2855 . 2 (𝜑 → (({𝐴} +𝑐 {𝐵})(dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))({𝐶} +𝑐 {𝐷})) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
14951, 58, 1483eqtr3d 2859 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wo 865   = wceq 1637  wcel 2157  wrex 3108  Vcvv 3402  cun 3778  wss 3780  c0 4127  {csn 4381  {cpr 4383  cop 4387   class class class wbr 4855  cmpt 4934   Or wor 5244   × cxp 5322  ccnv 5323  ran crn 5325  cres 5326  Oncon0 5950   Fn wfn 6106  wf 6107  1-1-ontowf1o 6110  cfv 6111  (class class class)co 6884  cmpt2 6886  1𝑜c1o 7799  2𝑜c2o 7800  supcsup 8595   +𝑐 ccda 9284  0cc0 10231  *cxr 10368   < clt 10369  cle 10370  Basecbs 16088  Scalarcsca 16176  distcds 16182  Xscprds 16331   ×s cxps 16391  ∞Metcxmt 19959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-pre-sup 10309
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-isom 6120  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-of 7137  df-om 7306  df-1st 7408  df-2nd 7409  df-supp 7540  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-2o 7807  df-oadd 7810  df-er 7989  df-map 8104  df-ixp 8156  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-fsupp 8525  df-sup 8597  df-inf 8598  df-oi 8664  df-card 9058  df-cda 9285  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-nn 11316  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11580  df-z 11664  df-dec 11780  df-uz 11925  df-rp 12067  df-xneg 12182  df-xadd 12183  df-xmul 12184  df-icc 12420  df-fz 12570  df-fzo 12710  df-seq 13045  df-hash 13358  df-struct 16090  df-ndx 16091  df-slot 16092  df-base 16094  df-sets 16095  df-ress 16096  df-plusg 16186  df-mulr 16187  df-sca 16189  df-vsca 16190  df-ip 16191  df-tset 16192  df-ple 16193  df-ds 16195  df-hom 16197  df-cco 16198  df-0g 16327  df-gsum 16328  df-prds 16333  df-xrs 16387  df-imas 16393  df-xps 16395  df-mre 16471  df-mrc 16472  df-acs 16474  df-mgm 17467  df-sgrp 17509  df-mnd 17520  df-submnd 17561  df-mulg 17766  df-cntz 17971  df-cmn 18416  df-xmet 19967
This theorem is referenced by:  tmsxpsval  22577
  Copyright terms: Public domain W3C validator