MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsval Structured version   Visualization version   GIF version

Theorem xpsdsval 23534
Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
xpsds.a (𝜑𝐴𝑋)
xpsds.b (𝜑𝐵𝑌)
xpsds.c (𝜑𝐶𝑋)
xpsds.d (𝜑𝐷𝑌)
Assertion
Ref Expression
xpsdsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem xpsdsval
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . . . 5 𝑋 = (Base‘𝑅)
3 xpsds.y . . . . 5 𝑌 = (Base‘𝑆)
4 xpsds.1 . . . . 5 (𝜑𝑅𝑉)
5 xpsds.2 . . . . 5 (𝜑𝑆𝑊)
6 eqid 2738 . . . . 5 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2738 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2738 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17281 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17282 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 17280 . . . . 5 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6728 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
14 ovexd 7310 . . . 4 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
15 eqid 2738 . . . 4 ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) = ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
16 xpsds.p . . . 4 𝑃 = (dist‘𝑇)
17 xpsds.m . . . . . 6 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
18 xpsds.n . . . . . 6 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
19 xpsds.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
20 xpsds.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
211, 2, 3, 4, 5, 16, 17, 18, 19, 20xpsxmetlem 23532 . . . . 5 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
22 ssid 3943 . . . . 5 ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
23 xmetres2 23514 . . . . 5 (((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
2421, 22, 23sylancl 586 . . . 4 (𝜑 → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
25 df-ov 7278 . . . . . 6 (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩)
26 xpsds.a . . . . . . 7 (𝜑𝐴𝑋)
27 xpsds.b . . . . . . 7 (𝜑𝐵𝑌)
286xpsfval 17277 . . . . . . 7 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
2926, 27, 28syl2anc 584 . . . . . 6 (𝜑 → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3025, 29eqtr3id 2792 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3126, 27opelxpd 5627 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
32 f1of 6716 . . . . . . . 8 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
3311, 32ax-mp 5 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
3433ffvelrni 6960 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
3531, 34syl 17 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
3630, 35eqeltrrd 2840 . . . 4 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
37 df-ov 7278 . . . . . 6 (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩)
38 xpsds.c . . . . . . 7 (𝜑𝐶𝑋)
39 xpsds.d . . . . . . 7 (𝜑𝐷𝑌)
406xpsfval 17277 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
4138, 39, 40syl2anc 584 . . . . . 6 (𝜑 → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
4237, 41eqtr3id 2792 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
4338, 39opelxpd 5627 . . . . . 6 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
4433ffvelrni 6960 . . . . . 6 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
4543, 44syl 17 . . . . 5 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
4642, 45eqeltrrd 2840 . . . 4 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
479, 10, 13, 14, 15, 16, 24, 36, 46imasdsf1o 23527 . . 3 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})𝑃((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
4836, 46ovresd 7439 . . 3 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
4947, 48eqtrd 2778 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})𝑃((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
50 f1ocnvfv 7150 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
5111, 31, 50sylancr 587 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
5230, 51mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩)
53 f1ocnvfv 7150 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
5411, 43, 53sylancr 587 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
5542, 54mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩)
5652, 55oveq12d 7293 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})𝑃((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩))
57 eqid 2738 . . . 4 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
58 fvexd 6789 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
59 2on 8311 . . . . 5 2o ∈ On
6059a1i 11 . . . 4 (𝜑 → 2o ∈ On)
61 fnpr2o 17268 . . . . 5 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
624, 5, 61syl2anc 584 . . . 4 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6336, 10eleqtrd 2841 . . . 4 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
6446, 10eleqtrd 2841 . . . 4 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
65 eqid 2738 . . . 4 (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
668, 57, 58, 60, 62, 63, 64, 65prdsdsval 17189 . . 3 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = sup((ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ∪ {0}), ℝ*, < ))
67 df2o3 8305 . . . . . . . . . . 11 2o = {∅, 1o}
6867rexeqi 3347 . . . . . . . . . 10 (∃𝑘 ∈ 2o 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ ∃𝑘 ∈ {∅, 1o}𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)))
69 0ex 5231 . . . . . . . . . . 11 ∅ ∈ V
70 1oex 8307 . . . . . . . . . . 11 1o ∈ V
71 2fveq3 6779 . . . . . . . . . . . . 13 (𝑘 = ∅ → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
72 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = ∅ → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
73 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = ∅ → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅))
7471, 72, 73oveq123d 7296 . . . . . . . . . . . 12 (𝑘 = ∅ → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)))
7574eqeq2d 2749 . . . . . . . . . . 11 (𝑘 = ∅ → (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅))))
76 2fveq3 6779 . . . . . . . . . . . . 13 (𝑘 = 1o → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
77 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 1o → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
78 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 1o → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))
7976, 77, 78oveq123d 7296 . . . . . . . . . . . 12 (𝑘 = 1o → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
8079eqeq2d 2749 . . . . . . . . . . 11 (𝑘 = 1o → (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))))
8169, 70, 75, 80rexpr 4637 . . . . . . . . . 10 (∃𝑘 ∈ {∅, 1o}𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) ∨ 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))))
8268, 81bitri 274 . . . . . . . . 9 (∃𝑘 ∈ 2o 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) ∨ 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))))
83 fvpr0o 17270 . . . . . . . . . . . . . . 15 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
844, 83syl 17 . . . . . . . . . . . . . 14 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
8584fveq2d 6778 . . . . . . . . . . . . 13 (𝜑 → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (dist‘𝑅))
86 fvpr0o 17270 . . . . . . . . . . . . . 14 (𝐴𝑋 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
8726, 86syl 17 . . . . . . . . . . . . 13 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
88 fvpr0o 17270 . . . . . . . . . . . . . 14 (𝐶𝑋 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
8938, 88syl 17 . . . . . . . . . . . . 13 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
9085, 87, 89oveq123d 7296 . . . . . . . . . . . 12 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) = (𝐴(dist‘𝑅)𝐶))
9117oveqi 7288 . . . . . . . . . . . . 13 (𝐴𝑀𝐶) = (𝐴((dist‘𝑅) ↾ (𝑋 × 𝑋))𝐶)
9226, 38ovresd 7439 . . . . . . . . . . . . 13 (𝜑 → (𝐴((dist‘𝑅) ↾ (𝑋 × 𝑋))𝐶) = (𝐴(dist‘𝑅)𝐶))
9391, 92eqtrid 2790 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘𝑅)𝐶))
9490, 93eqtr4d 2781 . . . . . . . . . . 11 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) = (𝐴𝑀𝐶))
9594eqeq2d 2749 . . . . . . . . . 10 (𝜑 → (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) ↔ 𝑥 = (𝐴𝑀𝐶)))
96 fvpr1o 17271 . . . . . . . . . . . . . . 15 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
975, 96syl 17 . . . . . . . . . . . . . 14 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
9897fveq2d 6778 . . . . . . . . . . . . 13 (𝜑 → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (dist‘𝑆))
99 fvpr1o 17271 . . . . . . . . . . . . . 14 (𝐵𝑌 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
10027, 99syl 17 . . . . . . . . . . . . 13 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
101 fvpr1o 17271 . . . . . . . . . . . . . 14 (𝐷𝑌 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
10239, 101syl 17 . . . . . . . . . . . . 13 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
10398, 100, 102oveq123d 7296 . . . . . . . . . . . 12 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)) = (𝐵(dist‘𝑆)𝐷))
10418oveqi 7288 . . . . . . . . . . . . 13 (𝐵𝑁𝐷) = (𝐵((dist‘𝑆) ↾ (𝑌 × 𝑌))𝐷)
10527, 39ovresd 7439 . . . . . . . . . . . . 13 (𝜑 → (𝐵((dist‘𝑆) ↾ (𝑌 × 𝑌))𝐷) = (𝐵(dist‘𝑆)𝐷))
106104, 105eqtrid 2790 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘𝑆)𝐷))
107103, 106eqtr4d 2781 . . . . . . . . . . 11 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)) = (𝐵𝑁𝐷))
108107eqeq2d 2749 . . . . . . . . . 10 (𝜑 → (𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)) ↔ 𝑥 = (𝐵𝑁𝐷)))
10995, 108orbi12d 916 . . . . . . . . 9 (𝜑 → ((𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)) ∨ 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))) ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷))))
11082, 109bitrid 282 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ 2o 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷))))
111 eqid 2738 . . . . . . . . . 10 (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)))
112111elrnmpt 5865 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ↔ ∃𝑘 ∈ 2o 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
113112elv 3438 . . . . . . . 8 (𝑥 ∈ ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ↔ ∃𝑘 ∈ 2o 𝑥 = (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)))
114 vex 3436 . . . . . . . . 9 𝑥 ∈ V
115114elpr 4584 . . . . . . . 8 (𝑥 ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ↔ (𝑥 = (𝐴𝑀𝐶) ∨ 𝑥 = (𝐵𝑁𝐷)))
116110, 113, 1153bitr4g 314 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ↔ 𝑥 ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}))
117116eqrdv 2736 . . . . . 6 (𝜑 → ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
118117uneq1d 4096 . . . . 5 (𝜑 → (ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ∪ {0}) = ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ∪ {0}))
119 uncom 4087 . . . . 5 ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ∪ {0}) = ({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
120118, 119eqtrdi 2794 . . . 4 (𝜑 → (ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ∪ {0}) = ({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}))
121120supeq1d 9205 . . 3 (𝜑 → sup((ran (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) ∪ {0}), ℝ*, < ) = sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ))
122 0xr 11022 . . . . . 6 0 ∈ ℝ*
123122a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ*)
124123snssd 4742 . . . 4 (𝜑 → {0} ⊆ ℝ*)
125 xmetcl 23484 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) ∈ ℝ*)
12619, 26, 38, 125syl3anc 1370 . . . . 5 (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*)
127 xmetcl 23484 . . . . . 6 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝐷𝑌) → (𝐵𝑁𝐷) ∈ ℝ*)
12820, 27, 39, 127syl3anc 1370 . . . . 5 (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*)
129126, 128prssd 4755 . . . 4 (𝜑 → {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ*)
130 xrltso 12875 . . . . . 6 < Or ℝ*
131 supsn 9231 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
132130, 122, 131mp2an 689 . . . . 5 sup({0}, ℝ*, < ) = 0
133 supxrcl 13049 . . . . . . 7 ({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
134129, 133syl 17 . . . . . 6 (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
135 xmetge0 23497 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → 0 ≤ (𝐴𝑀𝐶))
13619, 26, 38, 135syl3anc 1370 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑀𝐶))
137 ovex 7308 . . . . . . . 8 (𝐴𝑀𝐶) ∈ V
138137prid1 4698 . . . . . . 7 (𝐴𝑀𝐶) ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}
139 supxrub 13058 . . . . . . 7 (({(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* ∧ (𝐴𝑀𝐶) ∈ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}) → (𝐴𝑀𝐶) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
140129, 138, 139sylancl 586 . . . . . 6 (𝜑 → (𝐴𝑀𝐶) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
141123, 126, 134, 136, 140xrletrd 12896 . . . . 5 (𝜑 → 0 ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
142132, 141eqbrtrid 5109 . . . 4 (𝜑 → sup({0}, ℝ*, < ) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
143 supxrun 13050 . . . 4 (({0} ⊆ ℝ* ∧ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)} ⊆ ℝ* ∧ sup({0}, ℝ*, < ) ≤ sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) → sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
144124, 129, 142, 143syl3anc 1370 . . 3 (𝜑 → sup(({0} ∪ {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
14566, 121, 1443eqtrd 2782 . 2 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
14649, 56, 1453eqtr3d 2786 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cun 3885  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  cmpt 5157   Or wor 5502   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  Oncon0 6266   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  supcsup 9199  0cc0 10871  *cxr 11008   < clt 11009  cle 11010  Basecbs 16912  Scalarcsca 16965  distcds 16971  Xscprds 17156   ×s cxps 17217  ∞Metcxmet 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-xrs 17213  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-xmet 20590
This theorem is referenced by:  tmsxpsval  23694
  Copyright terms: Public domain W3C validator