MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsval Structured version   Visualization version   GIF version

Theorem xpsdsval 23894
Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 Γ—s 𝑆)
xpsds.x 𝑋 = (Baseβ€˜π‘…)
xpsds.y π‘Œ = (Baseβ€˜π‘†)
xpsds.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpsds.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
xpsds.p 𝑃 = (distβ€˜π‘‡)
xpsds.m 𝑀 = ((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))
xpsds.n 𝑁 = ((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))
xpsds.3 (πœ‘ β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
xpsds.4 (πœ‘ β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
xpsds.a (πœ‘ β†’ 𝐴 ∈ 𝑋)
xpsds.b (πœ‘ β†’ 𝐡 ∈ π‘Œ)
xpsds.c (πœ‘ β†’ 𝐢 ∈ 𝑋)
xpsds.d (πœ‘ β†’ 𝐷 ∈ π‘Œ)
Assertion
Ref Expression
xpsdsval (πœ‘ β†’ (⟨𝐴, π΅βŸ©π‘ƒβŸ¨πΆ, 𝐷⟩) = sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))

Proof of Theorem xpsdsval
Dummy variables π‘₯ π‘˜ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . . . 5 𝑇 = (𝑅 Γ—s 𝑆)
2 xpsds.x . . . . 5 𝑋 = (Baseβ€˜π‘…)
3 xpsds.y . . . . 5 π‘Œ = (Baseβ€˜π‘†)
4 xpsds.1 . . . . 5 (πœ‘ β†’ 𝑅 ∈ 𝑉)
5 xpsds.2 . . . . 5 (πœ‘ β†’ 𝑆 ∈ π‘Š)
6 eqid 2732 . . . . 5 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
7 eqid 2732 . . . . 5 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
8 eqid 2732 . . . . 5 ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17518 . . . 4 (πœ‘ β†’ 𝑇 = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17519 . . . 4 (πœ‘ β†’ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
116xpsff1o2 17517 . . . . 5 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
12 f1ocnv 6845 . . . . 5 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
1311, 12mp1i 13 . . . 4 (πœ‘ β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
14 ovexd 7446 . . . 4 (πœ‘ β†’ ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) ∈ V)
15 eqid 2732 . . . 4 ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))) = ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
16 xpsds.p . . . 4 𝑃 = (distβ€˜π‘‡)
17 xpsds.m . . . . . 6 𝑀 = ((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))
18 xpsds.n . . . . . 6 𝑁 = ((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))
19 xpsds.3 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
20 xpsds.4 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
211, 2, 3, 4, 5, 16, 17, 18, 19, 20xpsxmetlem 23892 . . . . 5 (πœ‘ β†’ (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
22 ssid 4004 . . . . 5 ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) βŠ† ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
23 xmetres2 23874 . . . . 5 (((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})) ∧ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) βŠ† ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})) β†’ ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
2421, 22, 23sylancl 586 . . . 4 (πœ‘ β†’ ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
25 df-ov 7414 . . . . . 6 (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐡) = ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩)
26 xpsds.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ 𝑋)
27 xpsds.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ π‘Œ)
286xpsfval 17514 . . . . . . 7 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ) β†’ (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐡) = {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})
2926, 27, 28syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐡) = {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})
3025, 29eqtr3id 2786 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩) = {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})
3126, 27opelxpd 5715 . . . . . 6 (πœ‘ β†’ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ))
32 f1of 6833 . . . . . . . 8 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)⟢ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
3311, 32ax-mp 5 . . . . . . 7 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)⟢ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
3433ffvelcdmi 7085 . . . . . 6 (⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ) β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩) ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
3531, 34syl 17 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩) ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
3630, 35eqeltrrd 2834 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
37 df-ov 7414 . . . . . 6 (𝐢(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐷) = ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩)
38 xpsds.c . . . . . . 7 (πœ‘ β†’ 𝐢 ∈ 𝑋)
39 xpsds.d . . . . . . 7 (πœ‘ β†’ 𝐷 ∈ π‘Œ)
406xpsfval 17514 . . . . . . 7 ((𝐢 ∈ 𝑋 ∧ 𝐷 ∈ π‘Œ) β†’ (𝐢(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐷) = {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})
4138, 39, 40syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐢(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})𝐷) = {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})
4237, 41eqtr3id 2786 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩) = {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})
4338, 39opelxpd 5715 . . . . . 6 (πœ‘ β†’ ⟨𝐢, 𝐷⟩ ∈ (𝑋 Γ— π‘Œ))
4433ffvelcdmi 7085 . . . . . 6 (⟨𝐢, 𝐷⟩ ∈ (𝑋 Γ— π‘Œ) β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩) ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
4543, 44syl 17 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩) ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
4642, 45eqeltrrd 2834 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
479, 10, 13, 14, 15, 16, 24, 36, 46imasdsf1o 23887 . . 3 (πœ‘ β†’ ((β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})𝑃(β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})) = ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}))
4836, 46ovresd 7576 . . 3 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ((distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) β†Ύ (ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) Γ— ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}))
4947, 48eqtrd 2772 . 2 (πœ‘ β†’ ((β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})𝑃(β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})) = ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}))
50 f1ocnvfv 7278 . . . . 5 (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) ∧ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ)) β†’ (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩) = {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}) = ⟨𝐴, 𝐡⟩))
5111, 31, 50sylancr 587 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨π΄, 𝐡⟩) = {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}) = ⟨𝐴, 𝐡⟩))
5230, 51mpd 15 . . 3 (πœ‘ β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}) = ⟨𝐴, 𝐡⟩)
53 f1ocnvfv 7278 . . . . 5 (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) ∧ ⟨𝐢, 𝐷⟩ ∈ (𝑋 Γ— π‘Œ)) β†’ (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩) = {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = ⟨𝐢, 𝐷⟩))
5411, 43, 53sylancr 587 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜βŸ¨πΆ, 𝐷⟩) = {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = ⟨𝐢, 𝐷⟩))
5542, 54mpd 15 . . 3 (πœ‘ β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = ⟨𝐢, 𝐷⟩)
5652, 55oveq12d 7429 . 2 (πœ‘ β†’ ((β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩})𝑃(β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})) = (⟨𝐴, π΅βŸ©π‘ƒβŸ¨πΆ, 𝐷⟩))
57 eqid 2732 . . . 4 (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
58 fvexd 6906 . . . 4 (πœ‘ β†’ (Scalarβ€˜π‘…) ∈ V)
59 2on 8482 . . . . 5 2o ∈ On
6059a1i 11 . . . 4 (πœ‘ β†’ 2o ∈ On)
61 fnpr2o 17505 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o)
624, 5, 61syl2anc 584 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o)
6336, 10eleqtrd 2835 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
6446, 10eleqtrd 2835 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
65 eqid 2732 . . . 4 (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
668, 57, 58, 60, 62, 63, 64, 65prdsdsval 17426 . . 3 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = sup((ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) βˆͺ {0}), ℝ*, < ))
67 df2o3 8476 . . . . . . . . . . 11 2o = {βˆ…, 1o}
6867rexeqi 3324 . . . . . . . . . 10 (βˆƒπ‘˜ ∈ 2o π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ βˆƒπ‘˜ ∈ {βˆ…, 1o}π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)))
69 0ex 5307 . . . . . . . . . . 11 βˆ… ∈ V
70 1oex 8478 . . . . . . . . . . 11 1o ∈ V
71 2fveq3 6896 . . . . . . . . . . . . 13 (π‘˜ = βˆ… β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…)))
72 fveq2 6891 . . . . . . . . . . . . 13 (π‘˜ = βˆ… β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜) = ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…))
73 fveq2 6891 . . . . . . . . . . . . 13 (π‘˜ = βˆ… β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜) = ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…))
7471, 72, 73oveq123d 7432 . . . . . . . . . . . 12 (π‘˜ = βˆ… β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)))
7574eqeq2d 2743 . . . . . . . . . . 11 (π‘˜ = βˆ… β†’ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…))))
76 2fveq3 6896 . . . . . . . . . . . . 13 (π‘˜ = 1o β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o)))
77 fveq2 6891 . . . . . . . . . . . . 13 (π‘˜ = 1o β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜) = ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o))
78 fveq2 6891 . . . . . . . . . . . . 13 (π‘˜ = 1o β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜) = ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o))
7976, 77, 78oveq123d 7432 . . . . . . . . . . . 12 (π‘˜ = 1o β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o)))
8079eqeq2d 2743 . . . . . . . . . . 11 (π‘˜ = 1o β†’ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o))))
8169, 70, 75, 80rexpr 4705 . . . . . . . . . 10 (βˆƒπ‘˜ ∈ {βˆ…, 1o}π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) ∨ π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o))))
8268, 81bitri 274 . . . . . . . . 9 (βˆƒπ‘˜ ∈ 2o π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) ∨ π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o))))
83 fvpr0o 17507 . . . . . . . . . . . . . . 15 (𝑅 ∈ 𝑉 β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…) = 𝑅)
844, 83syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…) = 𝑅)
8584fveq2d 6895 . . . . . . . . . . . . 13 (πœ‘ β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…)) = (distβ€˜π‘…))
86 fvpr0o 17507 . . . . . . . . . . . . . 14 (𝐴 ∈ 𝑋 β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…) = 𝐴)
8726, 86syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…) = 𝐴)
88 fvpr0o 17507 . . . . . . . . . . . . . 14 (𝐢 ∈ 𝑋 β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…) = 𝐢)
8938, 88syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…) = 𝐢)
9085, 87, 89oveq123d 7432 . . . . . . . . . . . 12 (πœ‘ β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) = (𝐴(distβ€˜π‘…)𝐢))
9117oveqi 7424 . . . . . . . . . . . . 13 (𝐴𝑀𝐢) = (𝐴((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))𝐢)
9226, 38ovresd 7576 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))𝐢) = (𝐴(distβ€˜π‘…)𝐢))
9391, 92eqtrid 2784 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴𝑀𝐢) = (𝐴(distβ€˜π‘…)𝐢))
9490, 93eqtr4d 2775 . . . . . . . . . . 11 (πœ‘ β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) = (𝐴𝑀𝐢))
9594eqeq2d 2743 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) ↔ π‘₯ = (𝐴𝑀𝐢)))
96 fvpr1o 17508 . . . . . . . . . . . . . . 15 (𝑆 ∈ π‘Š β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o) = 𝑆)
975, 96syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o) = 𝑆)
9897fveq2d 6895 . . . . . . . . . . . . 13 (πœ‘ β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o)) = (distβ€˜π‘†))
99 fvpr1o 17508 . . . . . . . . . . . . . 14 (𝐡 ∈ π‘Œ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o) = 𝐡)
10027, 99syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o) = 𝐡)
101 fvpr1o 17508 . . . . . . . . . . . . . 14 (𝐷 ∈ π‘Œ β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o) = 𝐷)
10239, 101syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o) = 𝐷)
10398, 100, 102oveq123d 7432 . . . . . . . . . . . 12 (πœ‘ β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o)) = (𝐡(distβ€˜π‘†)𝐷))
10418oveqi 7424 . . . . . . . . . . . . 13 (𝐡𝑁𝐷) = (𝐡((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))𝐷)
10527, 39ovresd 7576 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐡((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))𝐷) = (𝐡(distβ€˜π‘†)𝐷))
106104, 105eqtrid 2784 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐡𝑁𝐷) = (𝐡(distβ€˜π‘†)𝐷))
107103, 106eqtr4d 2775 . . . . . . . . . . 11 (πœ‘ β†’ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o)) = (𝐡𝑁𝐷))
108107eqeq2d 2743 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o)) ↔ π‘₯ = (𝐡𝑁𝐷)))
10995, 108orbi12d 917 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜βˆ…)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜βˆ…)) ∨ π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜1o)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜1o))) ↔ (π‘₯ = (𝐴𝑀𝐢) ∨ π‘₯ = (𝐡𝑁𝐷))))
11082, 109bitrid 282 . . . . . . . 8 (πœ‘ β†’ (βˆƒπ‘˜ ∈ 2o π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)) ↔ (π‘₯ = (𝐴𝑀𝐢) ∨ π‘₯ = (𝐡𝑁𝐷))))
111 eqid 2732 . . . . . . . . . 10 (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) = (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)))
112111elrnmpt 5955 . . . . . . . . 9 (π‘₯ ∈ V β†’ (π‘₯ ∈ ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) ↔ βˆƒπ‘˜ ∈ 2o π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))))
113112elv 3480 . . . . . . . 8 (π‘₯ ∈ ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) ↔ βˆƒπ‘˜ ∈ 2o π‘₯ = (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜)))
114 vex 3478 . . . . . . . . 9 π‘₯ ∈ V
115114elpr 4651 . . . . . . . 8 (π‘₯ ∈ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)} ↔ (π‘₯ = (𝐴𝑀𝐢) ∨ π‘₯ = (𝐡𝑁𝐷)))
116110, 113, 1153bitr4g 313 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) ↔ π‘₯ ∈ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}))
117116eqrdv 2730 . . . . . 6 (πœ‘ β†’ ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) = {(𝐴𝑀𝐢), (𝐡𝑁𝐷)})
118117uneq1d 4162 . . . . 5 (πœ‘ β†’ (ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) βˆͺ {0}) = ({(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βˆͺ {0}))
119 uncom 4153 . . . . 5 ({(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βˆͺ {0}) = ({0} βˆͺ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)})
120118, 119eqtrdi 2788 . . . 4 (πœ‘ β†’ (ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) βˆͺ {0}) = ({0} βˆͺ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}))
121120supeq1d 9443 . . 3 (πœ‘ β†’ sup((ran (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))) βˆͺ {0}), ℝ*, < ) = sup(({0} βˆͺ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}), ℝ*, < ))
122 0xr 11263 . . . . . 6 0 ∈ ℝ*
123122a1i 11 . . . . 5 (πœ‘ β†’ 0 ∈ ℝ*)
124123snssd 4812 . . . 4 (πœ‘ β†’ {0} βŠ† ℝ*)
125 xmetcl 23844 . . . . . 6 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (𝐴𝑀𝐢) ∈ ℝ*)
12619, 26, 38, 125syl3anc 1371 . . . . 5 (πœ‘ β†’ (𝐴𝑀𝐢) ∈ ℝ*)
127 xmetcl 23844 . . . . . 6 ((𝑁 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐡 ∈ π‘Œ ∧ 𝐷 ∈ π‘Œ) β†’ (𝐡𝑁𝐷) ∈ ℝ*)
12820, 27, 39, 127syl3anc 1371 . . . . 5 (πœ‘ β†’ (𝐡𝑁𝐷) ∈ ℝ*)
129126, 128prssd 4825 . . . 4 (πœ‘ β†’ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βŠ† ℝ*)
130 xrltso 13122 . . . . . 6 < Or ℝ*
131 supsn 9469 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*) β†’ sup({0}, ℝ*, < ) = 0)
132130, 122, 131mp2an 690 . . . . 5 sup({0}, ℝ*, < ) = 0
133 supxrcl 13296 . . . . . . 7 ({(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βŠ† ℝ* β†’ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
134129, 133syl 17 . . . . . 6 (πœ‘ β†’ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ) ∈ ℝ*)
135 xmetge0 23857 . . . . . . 7 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ 0 ≀ (𝐴𝑀𝐢))
13619, 26, 38, 135syl3anc 1371 . . . . . 6 (πœ‘ β†’ 0 ≀ (𝐴𝑀𝐢))
137 ovex 7444 . . . . . . . 8 (𝐴𝑀𝐢) ∈ V
138137prid1 4766 . . . . . . 7 (𝐴𝑀𝐢) ∈ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}
139 supxrub 13305 . . . . . . 7 (({(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βŠ† ℝ* ∧ (𝐴𝑀𝐢) ∈ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}) β†’ (𝐴𝑀𝐢) ≀ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
140129, 138, 139sylancl 586 . . . . . 6 (πœ‘ β†’ (𝐴𝑀𝐢) ≀ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
141123, 126, 134, 136, 140xrletrd 13143 . . . . 5 (πœ‘ β†’ 0 ≀ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
142132, 141eqbrtrid 5183 . . . 4 (πœ‘ β†’ sup({0}, ℝ*, < ) ≀ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
143 supxrun 13297 . . . 4 (({0} βŠ† ℝ* ∧ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)} βŠ† ℝ* ∧ sup({0}, ℝ*, < ) ≀ sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < )) β†’ sup(({0} βˆͺ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
144124, 129, 142, 143syl3anc 1371 . . 3 (πœ‘ β†’ sup(({0} βˆͺ {(𝐴𝑀𝐢), (𝐡𝑁𝐷)}), ℝ*, < ) = sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
14566, 121, 1443eqtrd 2776 . 2 (πœ‘ β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
14649, 56, 1453eqtr3d 2780 1 (πœ‘ β†’ (⟨𝐴, π΅βŸ©π‘ƒβŸ¨πΆ, 𝐷⟩) = sup({(𝐴𝑀𝐢), (𝐡𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∨ wo 845   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   βˆͺ cun 3946   βŠ† wss 3948  βˆ…c0 4322  {csn 4628  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   Or wor 5587   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   β†Ύ cres 5678  Oncon0 6364   Fn wfn 6538  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  1oc1o 8461  2oc2o 8462  supcsup 9437  0cc0 11112  β„*cxr 11249   < clt 11250   ≀ cle 11251  Basecbs 17146  Scalarcsca 17202  distcds 17208  Xscprds 17393   Γ—s cxps 17454  βˆžMetcxmet 20935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-icc 13333  df-fz 13487  df-fzo 13630  df-seq 13969  df-hash 14293  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-hom 17223  df-cco 17224  df-0g 17389  df-gsum 17390  df-prds 17395  df-xrs 17450  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-xmet 20943
This theorem is referenced by:  tmsxpsval  24054
  Copyright terms: Public domain W3C validator