MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o Structured version   Visualization version   GIF version

Theorem xpsff1o 17537
Description: The function appearing in xpsval 17540 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑘)

Proof of Theorem xpsff1o
Dummy variables 𝑎 𝑏 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 17534 . . . . . 6 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑥𝐴𝑦𝐵))
21biimpri 228 . . . . 5 ((𝑥𝐴𝑦𝐵) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
32rgen2 3178 . . . 4 𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
4 xpsff1o.f . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54fmpo 8050 . . . 4 (∀𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
63, 5mpbi 230 . . 3 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
7 1st2nd2 8010 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
87fveq2d 6865 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
9 df-ov 7393 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
10 xp1st 8003 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
11 xp2nd 8004 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
124xpsfval 17536 . . . . . . . . 9 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
1310, 11, 12syl2anc 584 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
149, 13eqtr3id 2779 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
158, 14eqtrd 2765 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
16 1st2nd2 8010 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
1716fveq2d 6865 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
18 df-ov 7393 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
19 xp1st 8003 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (1st𝑤) ∈ 𝐴)
20 xp2nd 8004 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (2nd𝑤) ∈ 𝐵)
214xpsfval 17536 . . . . . . . . 9 (((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2219, 20, 21syl2anc 584 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2318, 22eqtr3id 2779 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2417, 23eqtrd 2765 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2515, 24eqeqan12d 2744 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}))
26 fveq1 6860 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅))
27 fvex 6874 . . . . . . . . 9 (1st𝑧) ∈ V
28 fvpr0o 17529 . . . . . . . . 9 ((1st𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧))
2927, 28ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧)
30 fvex 6874 . . . . . . . . 9 (1st𝑤) ∈ V
31 fvpr0o 17529 . . . . . . . . 9 ((1st𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤))
3230, 31ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤)
3326, 29, 323eqtr3g 2788 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (1st𝑧) = (1st𝑤))
34 fveq1 6860 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o))
35 fvex 6874 . . . . . . . . 9 (2nd𝑧) ∈ V
36 fvpr1o 17530 . . . . . . . . 9 ((2nd𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧))
3735, 36ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧)
38 fvex 6874 . . . . . . . . 9 (2nd𝑤) ∈ V
39 fvpr1o 17530 . . . . . . . . 9 ((2nd𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤))
4038, 39ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤)
4134, 37, 403eqtr3g 2788 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (2nd𝑧) = (2nd𝑤))
4233, 41opeq12d 4848 . . . . . 6 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
437, 16eqeqan12d 2744 . . . . . 6 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
4442, 43imbitrrid 246 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → 𝑧 = 𝑤))
4525, 44sylbid 240 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
4645rgen2 3178 . . 3 𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
47 dff13 7232 . . 3 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
486, 46, 47mpbir2an 711 . 2 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
49 xpsfrnel 17532 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2o ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵))
5049simp2bi 1146 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴)
5149simp3bi 1147 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘1o) ∈ 𝐵)
524xpsfval 17536 . . . . . . 7 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
5350, 51, 52syl2anc 584 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
54 ixpfn 8879 . . . . . . 7 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 Fn 2o)
55 xpsfeq 17533 . . . . . . 7 (𝑧 Fn 2o → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
5654, 55syl 17 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
5753, 56eqtr2d 2766 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o)))
58 rspceov 7439 . . . . 5 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
5950, 51, 57, 58syl3anc 1373 . . . 4 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6059rgen 3047 . . 3 𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)
61 foov 7566 . . 3 (𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)))
626, 60, 61mpbir2an 711 . 2 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
63 df-f1o 6521 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)))
6448, 62, 63mpbir2an 711 1 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  c0 4299  ifcif 4491  {cpr 4594  cop 4598   × cxp 5639   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  1oc1o 8430  2oc2o 8431  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-fin 8925
This theorem is referenced by:  xpsfrn  17538  xpsff1o2  17539
  Copyright terms: Public domain W3C validator