MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsaddlem Structured version   Visualization version   GIF version

Theorem xpsaddlem 16838
Description: Lemma for xpsadd 16839 and xpsmul 16840. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsadd.3 (𝜑𝐴𝑋)
xpsadd.4 (𝜑𝐵𝑌)
xpsadd.5 (𝜑𝐶𝑋)
xpsadd.6 (𝜑𝐷𝑌)
xpsadd.7 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
xpsadd.8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
xpsaddlem.m · = (𝐸𝑅)
xpsaddlem.n × = (𝐸𝑆)
xpsaddlem.p = (𝐸𝑇)
xpsaddlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsaddlem.u 𝑈 = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
xpsaddlem.1 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹 ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹) → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
xpsaddlem.2 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈)) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
Assertion
Ref Expression
xpsaddlem (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝐵,𝑘,𝑥,𝑦   𝐶,𝑘,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝑆,𝑘   𝑈,𝑘   𝑥,𝑊   𝜑,𝑘   · ,𝑘,𝑥,𝑦   × ,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑅,𝑘,𝑥   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝑇(𝑥,𝑦,𝑘)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem xpsaddlem
StepHypRef Expression
1 df-ov 7138 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 xpsadd.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsadd.4 . . . . . 6 (𝜑𝐵𝑌)
4 xpsaddlem.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54xpsfval 16831 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴𝐹𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
62, 3, 5syl2anc 587 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
71, 6syl5eqr 2847 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82, 3opelxpd 5557 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
94xpsff1o2 16834 . . . . . . 7 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
10 f1of 6590 . . . . . . 7 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:(𝑋 × 𝑌)⟶ran 𝐹)
119, 10ax-mp 5 . . . . . 6 𝐹:(𝑋 × 𝑌)⟶ran 𝐹
1211ffvelrni 6827 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
138, 12syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
147, 13eqeltrrd 2891 . . 3 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹)
15 df-ov 7138 . . . . 5 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
16 xpsadd.5 . . . . . 6 (𝜑𝐶𝑋)
17 xpsadd.6 . . . . . 6 (𝜑𝐷𝑌)
184xpsfval 16831 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶𝐹𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
1916, 17, 18syl2anc 587 . . . . 5 (𝜑 → (𝐶𝐹𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2015, 19syl5eqr 2847 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2116, 17opelxpd 5557 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2211ffvelrni 6827 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2321, 22syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2420, 23eqeltrrd 2891 . . 3 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹)
25 xpsaddlem.1 . . 3 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹 ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹) → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
2614, 24, 25mpd3an23 1460 . 2 (𝜑 → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
27 f1ocnvfv 7013 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
289, 8, 27sylancr 590 . . . 4 (𝜑 → ((𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
297, 28mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩)
30 f1ocnvfv 7013 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
319, 21, 30sylancr 590 . . . 4 (𝜑 → ((𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
3220, 31mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩)
3329, 32oveq12d 7153 . 2 (𝜑 → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (⟨𝐴, 𝐵𝐶, 𝐷⟩))
34 iftrue 4431 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
3534fveq2d 6649 . . . . . . . . . . 11 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑅))
36 xpsaddlem.m . . . . . . . . . . 11 · = (𝐸𝑅)
3735, 36eqtr4di 2851 . . . . . . . . . 10 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
38 iftrue 4431 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
39 iftrue 4431 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐶)
4037, 38, 39oveq123d 7156 . . . . . . . . 9 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐴 · 𝐶))
41 iftrue 4431 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐴 · 𝐶))
4240, 41eqtr4d 2836 . . . . . . . 8 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
43 iffalse 4434 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
4443fveq2d 6649 . . . . . . . . . . 11 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑆))
45 xpsaddlem.n . . . . . . . . . . 11 × = (𝐸𝑆)
4644, 45eqtr4di 2851 . . . . . . . . . 10 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
47 iffalse 4434 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
48 iffalse 4434 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐷)
4946, 47, 48oveq123d 7156 . . . . . . . . 9 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐵 × 𝐷))
50 iffalse 4434 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐵 × 𝐷))
5149, 50eqtr4d 2836 . . . . . . . 8 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
5242, 51pm2.61i 185 . . . . . . 7 (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷))
53 xpsval.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
5453adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
55 xpsval.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
5655adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
57 simpr 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
58 fvprif 16826 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
5954, 56, 57, 58syl3anc 1368 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6059fveq2d 6649 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)))
612adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐴𝑋)
623adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑌)
63 fvprif 16826 . . . . . . . . 9 ((𝐴𝑋𝐵𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
6461, 62, 57, 63syl3anc 1368 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
6516adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑋)
6617adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐷𝑌)
67 fvprif 16826 . . . . . . . . 9 ((𝐶𝑋𝐷𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
6865, 66, 57, 67syl3anc 1368 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
6960, 64, 68oveq123d 7156 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)))
70 xpsadd.7 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
7170adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐶) ∈ 𝑋)
72 xpsadd.8 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
7372adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐵 × 𝐷) ∈ 𝑌)
74 fvprif 16826 . . . . . . . 8 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7571, 73, 57, 74syl3anc 1368 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7652, 69, 753eqtr4a 2859 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘))
7776mpteq2dva 5125 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
78 fnpr2o 16822 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
7953, 55, 78syl2anc 587 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
80 xpsval.t . . . . . . . 8 𝑇 = (𝑅 ×s 𝑆)
81 xpsval.x . . . . . . . 8 𝑋 = (Base‘𝑅)
82 xpsval.y . . . . . . . 8 𝑌 = (Base‘𝑆)
83 eqid 2798 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
84 xpsaddlem.u . . . . . . . 8 𝑈 = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
8580, 81, 82, 53, 55, 4, 83, 84xpsrnbas 16836 . . . . . . 7 (𝜑 → ran 𝐹 = (Base‘𝑈))
8614, 85eleqtrd 2892 . . . . . 6 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈))
8724, 85eleqtrd 2892 . . . . . 6 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈))
88 xpsaddlem.2 . . . . . 6 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈)) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
8979, 86, 87, 88syl3anc 1368 . . . . 5 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
90 fnpr2o 16822 . . . . . . 7 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o)
9170, 72, 90syl2anc 587 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o)
92 dffn5 6699 . . . . . 6 ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
9391, 92sylib 221 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
9477, 89, 933eqtr4d 2843 . . . 4 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9594fveq2d 6649 . . 3 (𝜑 → (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}))
96 df-ov 7138 . . . . 5 ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
974xpsfval 16831 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9870, 72, 97syl2anc 587 . . . . 5 (𝜑 → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9996, 98syl5eqr 2847 . . . 4 (𝜑 → (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
10070, 72opelxpd 5557 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
101 f1ocnvfv 7013 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
1029, 100, 101sylancr 590 . . . 4 (𝜑 → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
10399, 102mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10495, 103eqtrd 2833 . 2 (𝜑 → (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10526, 33, 1043eqtr3d 2841 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  c0 4243  ifcif 4425  {cpr 4527  cop 4531  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520   Fn wfn 6319  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  1oc1o 8078  2oc2o 8079  Basecbs 16475  Scalarcsca 16560  Xscprds 16711   ×s cxps 16771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713
This theorem is referenced by:  xpsadd  16839  xpsmul  16840
  Copyright terms: Public domain W3C validator