Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version |
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpscf | ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4454 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
2 | 1 | eleq2i 2824 | . . . . 5 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
3 | 2 | ralbii 3080 | . . . 4 ⊢ (∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
4 | 3 | anbi2i 626 | . . 3 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
5 | df-3an 1090 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
6 | elixp2 8511 | . . . 4 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
7 | 2onn 8297 | . . . . . . 7 ⊢ 2o ∈ ω | |
8 | fnex 6990 | . . . . . . 7 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ 2o ∈ ω) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
9 | 7, 8 | mpan2 691 | . . . . . 6 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
10 | 9 | pm4.71ri 564 | . . . . 5 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o)) |
11 | 10 | anbi1i 627 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
12 | 5, 6, 11 | 3bitr4i 306 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
13 | ffnfv 6892 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) | |
14 | 4, 12, 13 | 3bitr4i 306 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴) |
15 | xpsfrnel2 16940 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
16 | 14, 15 | bitr3i 280 | 1 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ∅c0 4211 ifcif 4414 {cpr 4518 〈cop 4522 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 ωcom 7599 1oc1o 8124 2oc2o 8125 Xcixp 8507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7600 df-1o 8131 df-2o 8132 df-ixp 8508 df-en 8556 df-fin 8559 |
This theorem is referenced by: xpsmnd 18067 xpsgrp 18336 dmdprdpr 19290 dprdpr 19291 xpstopnlem1 22560 xpstps 22561 xpsxms 23287 xpsms 23288 |
Copyright terms: Public domain | W3C validator |