![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version |
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpscf | ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4588 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
2 | 1 | eleq2i 2836 | . . . . 5 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
3 | 2 | ralbii 3099 | . . . 4 ⊢ (∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
4 | 3 | anbi2i 622 | . . 3 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
5 | df-3an 1089 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
6 | elixp2 8959 | . . . 4 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
7 | 2onn 8698 | . . . . . . 7 ⊢ 2o ∈ ω | |
8 | fnex 7254 | . . . . . . 7 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ 2o ∈ ω) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
9 | 7, 8 | mpan2 690 | . . . . . 6 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
10 | 9 | pm4.71ri 560 | . . . . 5 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o)) |
11 | 10 | anbi1i 623 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
12 | 5, 6, 11 | 3bitr4i 303 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
13 | ffnfv 7153 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) | |
14 | 4, 12, 13 | 3bitr4i 303 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴) |
15 | xpsfrnel2 17624 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
16 | 14, 15 | bitr3i 277 | 1 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 ifcif 4548 {cpr 4650 〈cop 4654 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 ωcom 7903 1oc1o 8515 2oc2o 8516 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-ixp 8956 df-en 9004 df-fin 9007 |
This theorem is referenced by: xpsmnd 18812 xpsgrp 19099 dmdprdpr 20093 dprdpr 20094 xpsrngd 20206 xpsringd 20355 xpstopnlem1 23838 xpstps 23839 xpsxms 24568 xpsms 24569 |
Copyright terms: Public domain | W3C validator |