MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpscf Structured version   Visualization version   GIF version

Theorem xpscf 17193
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))

Proof of Theorem xpscf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ifid 4496 . . . . . 6 if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴
21eleq2i 2830 . . . . 5 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
32ralbii 3090 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
43anbi2i 622 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
5 df-3an 1087 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
6 elixp2 8647 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
7 2onn 8433 . . . . . . 7 2o ∈ ω
8 fnex 7075 . . . . . . 7 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ 2o ∈ ω) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
97, 8mpan2 687 . . . . . 6 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
109pm4.71ri 560 . . . . 5 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o))
1110anbi1i 623 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
125, 6, 113bitr4i 302 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
13 ffnfv 6974 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
144, 12, 133bitr4i 302 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴)
15 xpsfrnel2 17192 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋𝐴𝑌𝐴))
1614, 15bitr3i 276 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  c0 4253  ifcif 4456  {cpr 4560  cop 4564   Fn wfn 6413  wf 6414  cfv 6418  ωcom 7687  1oc1o 8260  2oc2o 8261  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-ixp 8644  df-en 8692  df-fin 8695
This theorem is referenced by:  xpsmnd  18340  xpsgrp  18609  dmdprdpr  19567  dprdpr  19568  xpstopnlem1  22868  xpstps  22869  xpsxms  23596  xpsms  23597
  Copyright terms: Public domain W3C validator