![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version |
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpscf | ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4527 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
2 | 1 | eleq2i 2830 | . . . . 5 ⊢ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴) |
3 | 2 | ralbii 3097 | . . . 4 ⊢ (∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴) |
4 | 3 | anbi2i 624 | . . 3 ⊢ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)) |
5 | df-3an 1090 | . . . 4 ⊢ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
6 | elixp2 8840 | . . . 4 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
7 | 2onn 8589 | . . . . . . 7 ⊢ 2o ∈ ω | |
8 | fnex 7168 | . . . . . . 7 ⊢ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ 2o ∈ ω) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) | |
9 | 7, 8 | mpan2 690 | . . . . . 6 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) |
10 | 9 | pm4.71ri 562 | . . . . 5 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)) |
11 | 10 | anbi1i 625 | . . . 4 ⊢ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
12 | 5, 6, 11 | 3bitr4i 303 | . . 3 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
13 | ffnfv 7067 | . . 3 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o⟶𝐴 ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)) | |
14 | 4, 12, 13 | 3bitr4i 303 | . 2 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o⟶𝐴) |
15 | xpsfrnel2 17447 | . 2 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
16 | 14, 15 | bitr3i 277 | 1 ⊢ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3065 Vcvv 3446 ∅c0 4283 ifcif 4487 {cpr 4589 ⟨cop 4593 Fn wfn 6492 ⟶wf 6493 ‘cfv 6497 ωcom 7803 1oc1o 8406 2oc2o 8407 Xcixp 8836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-2o 8414 df-ixp 8837 df-en 8885 df-fin 8888 |
This theorem is referenced by: xpsmnd 18597 xpsgrp 18867 dmdprdpr 19829 dprdpr 19830 xpstopnlem1 23163 xpstps 23164 xpsxms 23893 xpsms 23894 |
Copyright terms: Public domain | W3C validator |