![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version |
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpscf | ⊢ (◡({𝑋} +𝑐 {𝑌}):2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4346 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
2 | 1 | eleq2i 2851 | . . . . 5 ⊢ ((◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴) |
3 | 2 | ralbii 3162 | . . . 4 ⊢ (∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴) |
4 | 3 | anbi2i 616 | . . 3 ⊢ ((◡({𝑋} +𝑐 {𝑌}) Fn 2o ∧ ∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2o ∧ ∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴)) |
5 | ovex 6954 | . . . . 5 ⊢ ({𝑋} +𝑐 {𝑌}) ∈ V | |
6 | 5 | cnvex 7392 | . . . 4 ⊢ ◡({𝑋} +𝑐 {𝑌}) ∈ V |
7 | 6 | elixp 8201 | . . 3 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2o ∧ ∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
8 | ffnfv 6652 | . . 3 ⊢ (◡({𝑋} +𝑐 {𝑌}):2o⟶𝐴 ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2o ∧ ∀𝑘 ∈ 2o (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴)) | |
9 | 4, 7, 8 | 3bitr4i 295 | . 2 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ◡({𝑋} +𝑐 {𝑌}):2o⟶𝐴) |
10 | xpsfrnel2 16611 | . 2 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
11 | 9, 10 | bitr3i 269 | 1 ⊢ (◡({𝑋} +𝑐 {𝑌}):2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∅c0 4141 ifcif 4307 {csn 4398 ◡ccnv 5354 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 2oc2o 7837 Xcixp 8194 +𝑐 ccda 9324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-cda 9325 |
This theorem is referenced by: xpsmnd 17716 xpsgrp 17921 dmdprdpr 18835 dprdpr 18836 xpstopnlem1 22021 xpstps 22022 xpsxms 22747 xpsms 22748 |
Copyright terms: Public domain | W3C validator |