MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpscf Structured version   Visualization version   GIF version

Theorem xpscf 17448
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))

Proof of Theorem xpscf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ifid 4527 . . . . . 6 if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴
21eleq2i 2830 . . . . 5 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
32ralbii 3097 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
43anbi2i 624 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
5 df-3an 1090 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
6 elixp2 8840 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
7 2onn 8589 . . . . . . 7 2o ∈ ω
8 fnex 7168 . . . . . . 7 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ 2o ∈ ω) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
97, 8mpan2 690 . . . . . 6 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
109pm4.71ri 562 . . . . 5 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o))
1110anbi1i 625 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
125, 6, 113bitr4i 303 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
13 ffnfv 7067 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
144, 12, 133bitr4i 303 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴)
15 xpsfrnel2 17447 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋𝐴𝑌𝐴))
1614, 15bitr3i 277 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  Vcvv 3446  c0 4283  ifcif 4487  {cpr 4589  cop 4593   Fn wfn 6492  wf 6493  cfv 6497  ωcom 7803  1oc1o 8406  2oc2o 8407  Xcixp 8836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-2o 8414  df-ixp 8837  df-en 8885  df-fin 8888
This theorem is referenced by:  xpsmnd  18597  xpsgrp  18867  dmdprdpr  19829  dprdpr  19830  xpstopnlem1  23163  xpstps  23164  xpsxms  23893  xpsms  23894
  Copyright terms: Public domain W3C validator