| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version | ||
| Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpscf | ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifid 4529 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
| 2 | 1 | eleq2i 2820 | . . . . 5 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
| 3 | 2 | ralbii 3075 | . . . 4 ⊢ (∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
| 5 | df-3an 1088 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
| 6 | elixp2 8874 | . . . 4 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
| 7 | 2onn 8606 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | fnex 7191 | . . . . . . 7 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ 2o ∈ ω) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
| 9 | 7, 8 | mpan2 691 | . . . . . 6 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
| 10 | 9 | pm4.71ri 560 | . . . . 5 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o)) |
| 11 | 10 | anbi1i 624 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
| 12 | 5, 6, 11 | 3bitr4i 303 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
| 13 | ffnfv 7091 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) | |
| 14 | 4, 12, 13 | 3bitr4i 303 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴) |
| 15 | xpsfrnel2 17527 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
| 16 | 14, 15 | bitr3i 277 | 1 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ifcif 4488 {cpr 4591 〈cop 4595 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 ωcom 7842 1oc1o 8427 2oc2o 8428 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-ixp 8871 df-en 8919 df-fin 8922 |
| This theorem is referenced by: xpsmnd 18704 xpsgrp 18991 dmdprdpr 19981 dprdpr 19982 xpsrngd 20088 xpsringd 20241 xpstopnlem1 23696 xpstps 23697 xpsxms 24422 xpsms 24423 |
| Copyright terms: Public domain | W3C validator |