MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpscf Structured version   Visualization version   GIF version

Theorem xpscf 16941
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))

Proof of Theorem xpscf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ifid 4454 . . . . . 6 if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴
21eleq2i 2824 . . . . 5 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
32ralbii 3080 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
43anbi2i 626 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
5 df-3an 1090 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
6 elixp2 8511 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
7 2onn 8297 . . . . . . 7 2o ∈ ω
8 fnex 6990 . . . . . . 7 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ 2o ∈ ω) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
97, 8mpan2 691 . . . . . 6 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
109pm4.71ri 564 . . . . 5 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o))
1110anbi1i 627 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
125, 6, 113bitr4i 306 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
13 ffnfv 6892 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
144, 12, 133bitr4i 306 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴)
15 xpsfrnel2 16940 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋𝐴𝑌𝐴))
1614, 15bitr3i 280 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  c0 4211  ifcif 4414  {cpr 4518  cop 4522   Fn wfn 6334  wf 6335  cfv 6339  ωcom 7599  1oc1o 8124  2oc2o 8125  Xcixp 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7600  df-1o 8131  df-2o 8132  df-ixp 8508  df-en 8556  df-fin 8559
This theorem is referenced by:  xpsmnd  18067  xpsgrp  18336  dmdprdpr  19290  dprdpr  19291  xpstopnlem1  22560  xpstps  22561  xpsxms  23287  xpsms  23288
  Copyright terms: Public domain W3C validator