| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version | ||
| Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpscf | ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifid 4546 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
| 2 | 1 | eleq2i 2827 | . . . . 5 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
| 3 | 2 | ralbii 3083 | . . . 4 ⊢ (∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
| 5 | df-3an 1088 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
| 6 | elixp2 8920 | . . . 4 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) | |
| 7 | 2onn 8659 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | fnex 7214 | . . . . . . 7 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ 2o ∈ ω) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
| 9 | 7, 8 | mpan2 691 | . . . . . 6 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
| 10 | 9 | pm4.71ri 560 | . . . . 5 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o)) |
| 11 | 10 | anbi1i 624 | . . . 4 ⊢ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o) ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
| 12 | 5, 6, 11 | 3bitr4i 303 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
| 13 | ffnfv 7114 | . . 3 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) | |
| 14 | 4, 12, 13 | 3bitr4i 303 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴) |
| 15 | xpsfrnel2 17583 | . 2 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
| 16 | 14, 15 | bitr3i 277 | 1 ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∅c0 4313 ifcif 4505 {cpr 4608 〈cop 4612 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 ωcom 7866 1oc1o 8478 2oc2o 8479 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-ixp 8917 df-en 8965 df-fin 8968 |
| This theorem is referenced by: xpsmnd 18760 xpsgrp 19047 dmdprdpr 20037 dprdpr 20038 xpsrngd 20144 xpsringd 20297 xpstopnlem1 23752 xpstps 23753 xpsxms 24478 xpsms 24479 |
| Copyright terms: Public domain | W3C validator |