MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Visualization version   GIF version

Theorem gasubg 19216
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
gasubg (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))

Proof of Theorem gasubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 19207 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
2 gasubg.1 . . . 4 𝐻 = (𝐺s 𝑆)
32subggrp 19043 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3anim12ci 614 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐻 ∈ Grp ∧ 𝑌 ∈ V))
5 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65gaf 19209 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :((Base‘𝐺) × 𝑌)⟶𝑌)
76adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
8 simpr 484 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
95subgss 19041 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
108, 9syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
11 xpss1 5650 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
1210, 11syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
137, 12fssresd 6709 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌)
142subgbas 19044 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
158, 14syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
1615xpeq1d 5660 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) = ((Base‘𝐻) × 𝑌))
1716feq2d 6654 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌 ↔ ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌))
1813, 17mpbid 232 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌)
198adantr 480 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑆 ∈ (SubGrp‘𝐺))
20 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
2120subg0cl 19048 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2219, 21syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑆)
23 simpr 484 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑥𝑌)
24 ovres 7535 . . . . . . 7 (((0g𝐺) ∈ 𝑆𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
2522, 23, 24syl2anc 584 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
262, 20subg0 19046 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
2719, 26syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) = (0g𝐻))
2827oveq1d 7384 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥))
2920gagrpid 19208 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3029adantlr 715 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3125, 28, 303eqtr3d 2772 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥)
32 eqimss2 4003 . . . . . . . . . . 11 (𝑆 = (Base‘𝐻) → (Base‘𝐻) ⊆ 𝑆)
3315, 32syl 17 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐻) ⊆ 𝑆)
3433adantr 480 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (Base‘𝐻) ⊆ 𝑆)
3534sselda 3943 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦𝑆)
3634sselda 3943 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑧 ∈ (Base‘𝐻)) → 𝑧𝑆)
3735, 36anim12dan 619 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → (𝑦𝑆𝑧𝑆))
38 simprl 770 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
397ad2antrr 726 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
409ad3antlr 731 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑆 ⊆ (Base‘𝐺))
41 simprr 772 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4240, 41sseldd 3944 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (Base‘𝐺))
4323adantr 480 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑥𝑌)
4439, 42, 43fovcdmd 7541 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 𝑥) ∈ 𝑌)
45 ovres 7535 . . . . . . . . . 10 ((𝑦𝑆 ∧ (𝑧 𝑥) ∈ 𝑌) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
4638, 44, 45syl2anc 584 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
47 ovres 7535 . . . . . . . . . . 11 ((𝑧𝑆𝑥𝑌) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4841, 43, 47syl2anc 584 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4948oveq2d 7385 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)))
50 simplll 774 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ∈ (𝐺 GrpAct 𝑌))
5140, 38sseldd 3944 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (Base‘𝐺))
52 eqid 2729 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
535, 52gaass 19211 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑥𝑌)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5450, 51, 42, 43, 53syl13anc 1374 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5546, 49, 543eqtr4d 2774 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = ((𝑦(+g𝐺)𝑧) 𝑥))
5652subgcl 19050 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆𝑧𝑆) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
57563expb 1120 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
5819, 57sylan 580 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
59 ovres 7535 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑆𝑥𝑌) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
6058, 43, 59syl2anc 584 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
612, 52ressplusg 17230 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
6261ad3antlr 731 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (+g𝐺) = (+g𝐻))
6362oveqd 7386 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐻)𝑧))
6463oveq1d 7384 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥))
6555, 60, 643eqtr2rd 2771 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6637, 65syldan 591 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6766ralrimivva 3178 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6831, 67jca 511 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
6968ralrimiva 3125 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
7018, 69jca 511 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))))
71 eqid 2729 . . 3 (Base‘𝐻) = (Base‘𝐻)
72 eqid 2729 . . 3 (+g𝐻) = (+g𝐻)
73 eqid 2729 . . 3 (0g𝐻) = (0g𝐻)
7471, 72, 73isga 19205 . 2 (( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌) ↔ ((𝐻 ∈ Grp ∧ 𝑌 ∈ V) ∧ (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))))
754, 70, 74sylanbrc 583 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911   × cxp 5629  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  SubGrpcsubg 19034   GrpAct cga 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-subg 19037  df-ga 19204
This theorem is referenced by:  sylow3lem5  19545
  Copyright terms: Public domain W3C validator