Step | Hyp | Ref
| Expression |
1 | | gaset 18534 |
. . 3
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝑌 ∈ V) |
2 | | gasubg.1 |
. . . 4
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
3 | 2 | subggrp 18393 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
4 | 1, 3 | anim12ci 617 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐻 ∈ Grp ∧ 𝑌 ∈ V)) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
6 | 5 | gaf 18536 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌) |
7 | 6 | adantr 484 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌) |
8 | | simpr 488 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) |
9 | 5 | subgss 18391 |
. . . . . . 7
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
11 | | xpss1 5538 |
. . . . . 6
⊢ (𝑆 ⊆ (Base‘𝐺) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌)) |
13 | 7, 12 | fssresd 6539 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ⊕ ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌) |
14 | 2 | subgbas 18394 |
. . . . . . 7
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
15 | 8, 14 | syl 17 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻)) |
16 | 15 | xpeq1d 5548 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) = ((Base‘𝐻) × 𝑌)) |
17 | 16 | feq2d 6484 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ⊕ ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌 ↔ ( ⊕ ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌)) |
18 | 13, 17 | mpbid 235 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ⊕ ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌) |
19 | 8 | adantr 484 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ (SubGrp‘𝐺)) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
21 | 20 | subg0cl 18398 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑆) |
23 | | simpr 488 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) |
24 | | ovres 7324 |
. . . . . . 7
⊢
(((0g‘𝐺) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((0g‘𝐺) ⊕ 𝑥)) |
25 | 22, 23, 24 | syl2anc 587 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((0g‘𝐺) ⊕ 𝑥)) |
26 | 2, 20 | subg0 18396 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
27 | 19, 26 | syl 17 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) = (0g‘𝐻)) |
28 | 27 | oveq1d 7179 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥)) |
29 | 20 | gagrpid 18535 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
30 | 29 | adantlr 715 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
31 | 25, 28, 30 | 3eqtr3d 2781 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = 𝑥) |
32 | | eqimss2 3932 |
. . . . . . . . . . 11
⊢ (𝑆 = (Base‘𝐻) → (Base‘𝐻) ⊆ 𝑆) |
33 | 15, 32 | syl 17 |
. . . . . . . . . 10
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐻) ⊆ 𝑆) |
34 | 33 | adantr 484 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → (Base‘𝐻) ⊆ 𝑆) |
35 | 34 | sselda 3875 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ 𝑆) |
36 | 34 | sselda 3875 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ (Base‘𝐻)) → 𝑧 ∈ 𝑆) |
37 | 35, 36 | anim12dan 622 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) |
38 | | simprl 771 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
39 | 7 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌) |
40 | 9 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
41 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
42 | 40, 41 | sseldd 3876 |
. . . . . . . . . . 11
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ (Base‘𝐺)) |
43 | 23 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝑌) |
44 | 39, 42, 43 | fovrnd 7330 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧 ⊕ 𝑥) ∈ 𝑌) |
45 | | ovres 7324 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑆 ∧ (𝑧 ⊕ 𝑥) ∈ 𝑌) → (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧 ⊕ 𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
46 | 38, 44, 45 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧 ⊕ 𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
47 | | ovres 7324 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑌) → (𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑧 ⊕ 𝑥)) |
48 | 41, 43, 47 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑧 ⊕ 𝑥)) |
49 | 48 | oveq2d 7180 |
. . . . . . . . 9
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥)) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧 ⊕ 𝑥))) |
50 | | simplll 775 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
51 | 40, 38 | sseldd 3876 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ (Base‘𝐺)) |
52 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
53 | 5, 52 | gaass 18538 |
. . . . . . . . . 10
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑥 ∈ 𝑌)) → ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
54 | 50, 51, 42, 43, 53 | syl13anc 1373 |
. . . . . . . . 9
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
55 | 46, 49, 54 | 3eqtr4d 2783 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥)) = ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥)) |
56 | 52 | subgcl 18400 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑆) |
57 | 56 | 3expb 1121 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑆) |
58 | 19, 57 | sylan 583 |
. . . . . . . . 9
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑆) |
59 | | ovres 7324 |
. . . . . . . . 9
⊢ (((𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌) → ((𝑦(+g‘𝐺)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥)) |
60 | 58, 43, 59 | syl2anc 587 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦(+g‘𝐺)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥)) |
61 | 2, 52 | ressplusg 16708 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
62 | 61 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (+g‘𝐺) = (+g‘𝐻)) |
63 | 62 | oveqd 7181 |
. . . . . . . . 9
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦(+g‘𝐺)𝑧) = (𝑦(+g‘𝐻)𝑧)) |
64 | 63 | oveq1d 7179 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦(+g‘𝐺)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥)) |
65 | 55, 60, 64 | 3eqtr2rd 2780 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥))) |
66 | 37, 65 | syldan 594 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → ((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥))) |
67 | 66 | ralrimivva 3103 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥))) |
68 | 31, 67 | jca 515 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑌) → (((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥)))) |
69 | 68 | ralrimiva 3096 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑌 (((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥)))) |
70 | 18, 69 | jca 515 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ⊕ ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥))))) |
71 | | eqid 2738 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
72 | | eqid 2738 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
73 | | eqid 2738 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
74 | 71, 72, 73 | isga 18532 |
. 2
⊢ (( ⊕
↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌) ↔ ((𝐻 ∈ Grp ∧ 𝑌 ∈ V) ∧ (( ⊕ ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐻)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑧)( ⊕ ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ⊕ ↾ (𝑆 × 𝑌))(𝑧( ⊕ ↾ (𝑆 × 𝑌))𝑥)))))) |
75 | 4, 70, 74 | sylanbrc 586 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ⊕ ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌)) |