MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Visualization version   GIF version

Theorem gasubg 19285
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
gasubg (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))

Proof of Theorem gasubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 19276 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
2 gasubg.1 . . . 4 𝐻 = (𝐺s 𝑆)
32subggrp 19112 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3anim12ci 614 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐻 ∈ Grp ∧ 𝑌 ∈ V))
5 eqid 2735 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65gaf 19278 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :((Base‘𝐺) × 𝑌)⟶𝑌)
76adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
8 simpr 484 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
95subgss 19110 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
108, 9syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
11 xpss1 5673 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
1210, 11syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
137, 12fssresd 6745 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌)
142subgbas 19113 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
158, 14syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
1615xpeq1d 5683 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) = ((Base‘𝐻) × 𝑌))
1716feq2d 6692 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌 ↔ ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌))
1813, 17mpbid 232 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌)
198adantr 480 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑆 ∈ (SubGrp‘𝐺))
20 eqid 2735 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
2120subg0cl 19117 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2219, 21syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑆)
23 simpr 484 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑥𝑌)
24 ovres 7573 . . . . . . 7 (((0g𝐺) ∈ 𝑆𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
2522, 23, 24syl2anc 584 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
262, 20subg0 19115 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
2719, 26syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) = (0g𝐻))
2827oveq1d 7420 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥))
2920gagrpid 19277 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3029adantlr 715 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3125, 28, 303eqtr3d 2778 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥)
32 eqimss2 4018 . . . . . . . . . . 11 (𝑆 = (Base‘𝐻) → (Base‘𝐻) ⊆ 𝑆)
3315, 32syl 17 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐻) ⊆ 𝑆)
3433adantr 480 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (Base‘𝐻) ⊆ 𝑆)
3534sselda 3958 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦𝑆)
3634sselda 3958 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑧 ∈ (Base‘𝐻)) → 𝑧𝑆)
3735, 36anim12dan 619 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → (𝑦𝑆𝑧𝑆))
38 simprl 770 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
397ad2antrr 726 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
409ad3antlr 731 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑆 ⊆ (Base‘𝐺))
41 simprr 772 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4240, 41sseldd 3959 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (Base‘𝐺))
4323adantr 480 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑥𝑌)
4439, 42, 43fovcdmd 7579 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 𝑥) ∈ 𝑌)
45 ovres 7573 . . . . . . . . . 10 ((𝑦𝑆 ∧ (𝑧 𝑥) ∈ 𝑌) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
4638, 44, 45syl2anc 584 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
47 ovres 7573 . . . . . . . . . . 11 ((𝑧𝑆𝑥𝑌) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4841, 43, 47syl2anc 584 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4948oveq2d 7421 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)))
50 simplll 774 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ∈ (𝐺 GrpAct 𝑌))
5140, 38sseldd 3959 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (Base‘𝐺))
52 eqid 2735 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
535, 52gaass 19280 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑥𝑌)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5450, 51, 42, 43, 53syl13anc 1374 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5546, 49, 543eqtr4d 2780 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = ((𝑦(+g𝐺)𝑧) 𝑥))
5652subgcl 19119 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆𝑧𝑆) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
57563expb 1120 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
5819, 57sylan 580 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
59 ovres 7573 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑆𝑥𝑌) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
6058, 43, 59syl2anc 584 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
612, 52ressplusg 17305 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
6261ad3antlr 731 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (+g𝐺) = (+g𝐻))
6362oveqd 7422 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐻)𝑧))
6463oveq1d 7420 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥))
6555, 60, 643eqtr2rd 2777 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6637, 65syldan 591 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6766ralrimivva 3187 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6831, 67jca 511 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
6968ralrimiva 3132 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
7018, 69jca 511 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))))
71 eqid 2735 . . 3 (Base‘𝐻) = (Base‘𝐻)
72 eqid 2735 . . 3 (+g𝐻) = (+g𝐻)
73 eqid 2735 . . 3 (0g𝐻) = (0g𝐻)
7471, 72, 73isga 19274 . 2 (( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌) ↔ ((𝐻 ∈ Grp ∧ 𝑌 ∈ V) ∧ (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))))
754, 70, 74sylanbrc 583 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926   × cxp 5652  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  SubGrpcsubg 19103   GrpAct cga 19272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-subg 19106  df-ga 19273
This theorem is referenced by:  sylow3lem5  19612
  Copyright terms: Public domain W3C validator