Step | Hyp | Ref
| Expression |
1 | | biimp 214 |
. . . . . 6
β’ (((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β ((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π)) |
2 | | iitop 24620 |
. . . . . . . . . . 11
β’ II β
Top |
3 | | iiuni 24621 |
. . . . . . . . . . . 12
β’ (0[,]1) =
βͺ II |
4 | 3 | neii1 22830 |
. . . . . . . . . . 11
β’ ((II
β Top β§ π’ β
((neiβII)β{π¦}))
β π’ β
(0[,]1)) |
5 | 2, 4 | mpan 686 |
. . . . . . . . . 10
β’ (π’ β
((neiβII)β{π¦})
β π’ β
(0[,]1)) |
6 | 5 | adantl 480 |
. . . . . . . . 9
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β π’ β (0[,]1)) |
7 | | xpss1 5694 |
. . . . . . . . 9
β’ (π’ β (0[,]1) β (π’ Γ {π₯}) β ((0[,]1) Γ {π₯})) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β (π’ Γ {π₯}) β ((0[,]1) Γ {π₯})) |
9 | | simpl 481 |
. . . . . . . 8
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β ((0[,]1) Γ
{π₯}) β π) |
10 | 8, 9 | sstrd 3991 |
. . . . . . 7
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β (π’ Γ {π₯}) β π) |
11 | | ssnei 22834 |
. . . . . . . . . . . 12
β’ ((II
β Top β§ π’ β
((neiβII)β{π¦}))
β {π¦} β π’) |
12 | 2, 11 | mpan 686 |
. . . . . . . . . . 11
β’ (π’ β
((neiβII)β{π¦})
β {π¦} β π’) |
13 | 12 | adantl 480 |
. . . . . . . . . 10
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β {π¦} β π’) |
14 | | vex 3476 |
. . . . . . . . . . 11
β’ π¦ β V |
15 | 14 | snss 4788 |
. . . . . . . . . 10
β’ (π¦ β π’ β {π¦} β π’) |
16 | 13, 15 | sylibr 233 |
. . . . . . . . 9
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β π¦ β π’) |
17 | | vsnid 4664 |
. . . . . . . . 9
β’ π‘ β {π‘} |
18 | | opelxpi 5712 |
. . . . . . . . 9
β’ ((π¦ β π’ β§ π‘ β {π‘}) β β¨π¦, π‘β© β (π’ Γ {π‘})) |
19 | 16, 17, 18 | sylancl 584 |
. . . . . . . 8
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β β¨π¦, π‘β© β (π’ Γ {π‘})) |
20 | | ssel 3974 |
. . . . . . . 8
β’ ((π’ Γ {π‘}) β π β (β¨π¦, π‘β© β (π’ Γ {π‘}) β β¨π¦, π‘β© β π)) |
21 | 19, 20 | syl5com 31 |
. . . . . . 7
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β ((π’ Γ {π‘}) β π β β¨π¦, π‘β© β π)) |
22 | 10, 21 | embantd 59 |
. . . . . 6
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β (((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β β¨π¦, π‘β© β π)) |
23 | 1, 22 | syl5 34 |
. . . . 5
β’
((((0[,]1) Γ {π₯}) β π β§ π’ β ((neiβII)β{π¦})) β (((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β β¨π¦, π‘β© β π)) |
24 | 23 | rexlimdva 3153 |
. . . 4
β’ (((0[,]1)
Γ {π₯}) β π β (βπ’ β
((neiβII)β{π¦})((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β β¨π¦, π‘β© β π)) |
25 | 24 | ralimdv 3167 |
. . 3
β’ (((0[,]1)
Γ {π₯}) β π β (βπ¦ β (0[,]1)βπ’ β
((neiβII)β{π¦})((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β βπ¦ β (0[,]1)β¨π¦, π‘β© β π)) |
26 | 25 | com12 32 |
. 2
β’
(βπ¦ β
(0[,]1)βπ’ β
((neiβII)β{π¦})((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β (((0[,]1) Γ {π₯}) β π β βπ¦ β (0[,]1)β¨π¦, π‘β© β π)) |
27 | | dfss3 3969 |
. . 3
β’ (((0[,]1)
Γ {π‘}) β π β βπ§ β ((0[,]1) Γ {π‘})π§ β π) |
28 | | eleq1 2819 |
. . . 4
β’ (π§ = β¨π¦, π’β© β (π§ β π β β¨π¦, π’β© β π)) |
29 | 28 | ralxp 5840 |
. . 3
β’
(βπ§ β
((0[,]1) Γ {π‘})π§ β π β βπ¦ β (0[,]1)βπ’ β {π‘}β¨π¦, π’β© β π) |
30 | | vex 3476 |
. . . . 5
β’ π‘ β V |
31 | | opeq2 4873 |
. . . . . 6
β’ (π’ = π‘ β β¨π¦, π’β© = β¨π¦, π‘β©) |
32 | 31 | eleq1d 2816 |
. . . . 5
β’ (π’ = π‘ β (β¨π¦, π’β© β π β β¨π¦, π‘β© β π)) |
33 | 30, 32 | ralsn 4684 |
. . . 4
β’
(βπ’ β
{π‘}β¨π¦, π’β© β π β β¨π¦, π‘β© β π) |
34 | 33 | ralbii 3091 |
. . 3
β’
(βπ¦ β
(0[,]1)βπ’ β
{π‘}β¨π¦, π’β© β π β βπ¦ β (0[,]1)β¨π¦, π‘β© β π) |
35 | 27, 29, 34 | 3bitri 296 |
. 2
β’ (((0[,]1)
Γ {π‘}) β π β βπ¦ β (0[,]1)β¨π¦, π‘β© β π) |
36 | 26, 35 | imbitrrdi 251 |
1
β’
(βπ¦ β
(0[,]1)βπ’ β
((neiβII)β{π¦})((π’ Γ {π₯}) β π β (π’ Γ {π‘}) β π) β (((0[,]1) Γ {π₯}) β π β ((0[,]1) Γ {π‘}) β π)) |