Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Structured version   Visualization version   GIF version

Theorem cvmlift2lem1 35329
Description: Lemma for cvmlift2 35343. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦   𝑢,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑡)

Proof of Theorem cvmlift2lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimp 215 . . . . . 6 (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
2 iitop 24829 . . . . . . . . . . 11 II ∈ Top
3 iiuni 24830 . . . . . . . . . . . 12 (0[,]1) = II
43neii1 23049 . . . . . . . . . . 11 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
52, 4mpan 690 . . . . . . . . . 10 (𝑢 ∈ ((nei‘II)‘{𝑦}) → 𝑢 ⊆ (0[,]1))
65adantl 481 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
7 xpss1 5678 . . . . . . . . 9 (𝑢 ⊆ (0[,]1) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
86, 7syl 17 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
9 simpl 482 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((0[,]1) × {𝑥}) ⊆ 𝑀)
108, 9sstrd 3974 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ 𝑀)
11 ssnei 23053 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
122, 11mpan 690 . . . . . . . . . . 11 (𝑢 ∈ ((nei‘II)‘{𝑦}) → {𝑦} ⊆ 𝑢)
1312adantl 481 . . . . . . . . . 10 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
14 vex 3468 . . . . . . . . . . 11 𝑦 ∈ V
1514snss 4766 . . . . . . . . . 10 (𝑦𝑢 ↔ {𝑦} ⊆ 𝑢)
1613, 15sylibr 234 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑦𝑢)
17 vsnid 4644 . . . . . . . . 9 𝑡 ∈ {𝑡}
18 opelxpi 5696 . . . . . . . . 9 ((𝑦𝑢𝑡 ∈ {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
1916, 17, 18sylancl 586 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
20 ssel 3957 . . . . . . . 8 ((𝑢 × {𝑡}) ⊆ 𝑀 → (⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2119, 20syl5com 31 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((𝑢 × {𝑡}) ⊆ 𝑀 → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2210, 21embantd 59 . . . . . 6 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
231, 22syl5 34 . . . . 5 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2423rexlimdva 3142 . . . 4 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2524ralimdv 3155 . . 3 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
2625com12 32 . 2 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
27 dfss3 3952 . . 3 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀)
28 eleq1 2823 . . . 4 (𝑧 = ⟨𝑦, 𝑢⟩ → (𝑧𝑀 ↔ ⟨𝑦, 𝑢⟩ ∈ 𝑀))
2928ralxp 5826 . . 3 (∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀 ↔ ∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀)
30 vex 3468 . . . . 5 𝑡 ∈ V
31 opeq2 4855 . . . . . 6 (𝑢 = 𝑡 → ⟨𝑦, 𝑢⟩ = ⟨𝑦, 𝑡⟩)
3231eleq1d 2820 . . . . 5 (𝑢 = 𝑡 → (⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀))
3330, 32ralsn 4662 . . . 4 (∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀)
3433ralbii 3083 . . 3 (∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3527, 29, 343bitri 297 . 2 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3626, 35imbitrrdi 252 1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3052  wrex 3061  wss 3931  {csn 4606  cop 4612   × cxp 5657  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370  Topctop 22836  neicnei 23040  IIcii 24824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-nei 23041  df-ii 24826
This theorem is referenced by:  cvmlift2lem12  35341
  Copyright terms: Public domain W3C validator