Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Structured version   Visualization version   GIF version

Theorem cvmlift2lem1 32158
Description: Lemma for cvmlift2 32172. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦   𝑢,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑡)

Proof of Theorem cvmlift2lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimp 216 . . . . . 6 (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
2 iitop 23171 . . . . . . . . . . 11 II ∈ Top
3 iiuni 23172 . . . . . . . . . . . 12 (0[,]1) = II
43neii1 21398 . . . . . . . . . . 11 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
52, 4mpan 686 . . . . . . . . . 10 (𝑢 ∈ ((nei‘II)‘{𝑦}) → 𝑢 ⊆ (0[,]1))
65adantl 482 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
7 xpss1 5462 . . . . . . . . 9 (𝑢 ⊆ (0[,]1) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
86, 7syl 17 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
9 simpl 483 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((0[,]1) × {𝑥}) ⊆ 𝑀)
108, 9sstrd 3899 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ 𝑀)
11 ssnei 21402 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
122, 11mpan 686 . . . . . . . . . . 11 (𝑢 ∈ ((nei‘II)‘{𝑦}) → {𝑦} ⊆ 𝑢)
1312adantl 482 . . . . . . . . . 10 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
14 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
1514snss 4625 . . . . . . . . . 10 (𝑦𝑢 ↔ {𝑦} ⊆ 𝑢)
1613, 15sylibr 235 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑦𝑢)
17 vsnid 4507 . . . . . . . . 9 𝑡 ∈ {𝑡}
18 opelxpi 5480 . . . . . . . . 9 ((𝑦𝑢𝑡 ∈ {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
1916, 17, 18sylancl 586 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
20 ssel 3883 . . . . . . . 8 ((𝑢 × {𝑡}) ⊆ 𝑀 → (⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2119, 20syl5com 31 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((𝑢 × {𝑡}) ⊆ 𝑀 → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2210, 21embantd 59 . . . . . 6 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
231, 22syl5 34 . . . . 5 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2423rexlimdva 3247 . . . 4 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2524ralimdv 3145 . . 3 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
2625com12 32 . 2 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
27 dfss3 3878 . . 3 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀)
28 eleq1 2870 . . . 4 (𝑧 = ⟨𝑦, 𝑢⟩ → (𝑧𝑀 ↔ ⟨𝑦, 𝑢⟩ ∈ 𝑀))
2928ralxp 5598 . . 3 (∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀 ↔ ∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀)
30 vex 3440 . . . . 5 𝑡 ∈ V
31 opeq2 4711 . . . . . 6 (𝑢 = 𝑡 → ⟨𝑦, 𝑢⟩ = ⟨𝑦, 𝑡⟩)
3231eleq1d 2867 . . . . 5 (𝑢 = 𝑡 → (⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀))
3330, 32ralsn 4526 . . . 4 (∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀)
3433ralbii 3132 . . 3 (∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3527, 29, 343bitri 298 . 2 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3626, 35syl6ibr 253 1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2081  wral 3105  wrex 3106  wss 3859  {csn 4472  cop 4478   × cxp 5441  cfv 6225  (class class class)co 7016  0cc0 10383  1c1 10384  [,]cicc 12591  Topctop 21185  neicnei 21389  IIcii 23166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-nei 21390  df-ii 23168
This theorem is referenced by:  cvmlift2lem12  32170
  Copyright terms: Public domain W3C validator