Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Structured version   Visualization version   GIF version

Theorem cvmlift2lem1 32662
Description: Lemma for cvmlift2 32676. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦   𝑢,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑡)

Proof of Theorem cvmlift2lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimp 218 . . . . . 6 (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
2 iitop 23485 . . . . . . . . . . 11 II ∈ Top
3 iiuni 23486 . . . . . . . . . . . 12 (0[,]1) = II
43neii1 21711 . . . . . . . . . . 11 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
52, 4mpan 689 . . . . . . . . . 10 (𝑢 ∈ ((nei‘II)‘{𝑦}) → 𝑢 ⊆ (0[,]1))
65adantl 485 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
7 xpss1 5538 . . . . . . . . 9 (𝑢 ⊆ (0[,]1) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
86, 7syl 17 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
9 simpl 486 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((0[,]1) × {𝑥}) ⊆ 𝑀)
108, 9sstrd 3925 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ 𝑀)
11 ssnei 21715 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
122, 11mpan 689 . . . . . . . . . . 11 (𝑢 ∈ ((nei‘II)‘{𝑦}) → {𝑦} ⊆ 𝑢)
1312adantl 485 . . . . . . . . . 10 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
14 vex 3444 . . . . . . . . . . 11 𝑦 ∈ V
1514snss 4679 . . . . . . . . . 10 (𝑦𝑢 ↔ {𝑦} ⊆ 𝑢)
1613, 15sylibr 237 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑦𝑢)
17 vsnid 4562 . . . . . . . . 9 𝑡 ∈ {𝑡}
18 opelxpi 5556 . . . . . . . . 9 ((𝑦𝑢𝑡 ∈ {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
1916, 17, 18sylancl 589 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
20 ssel 3908 . . . . . . . 8 ((𝑢 × {𝑡}) ⊆ 𝑀 → (⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2119, 20syl5com 31 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((𝑢 × {𝑡}) ⊆ 𝑀 → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2210, 21embantd 59 . . . . . 6 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
231, 22syl5 34 . . . . 5 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2423rexlimdva 3243 . . . 4 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2524ralimdv 3145 . . 3 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
2625com12 32 . 2 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
27 dfss3 3903 . . 3 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀)
28 eleq1 2877 . . . 4 (𝑧 = ⟨𝑦, 𝑢⟩ → (𝑧𝑀 ↔ ⟨𝑦, 𝑢⟩ ∈ 𝑀))
2928ralxp 5676 . . 3 (∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀 ↔ ∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀)
30 vex 3444 . . . . 5 𝑡 ∈ V
31 opeq2 4765 . . . . . 6 (𝑢 = 𝑡 → ⟨𝑦, 𝑢⟩ = ⟨𝑦, 𝑡⟩)
3231eleq1d 2874 . . . . 5 (𝑢 = 𝑡 → (⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀))
3330, 32ralsn 4579 . . . 4 (∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀)
3433ralbii 3133 . . 3 (∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3527, 29, 343bitri 300 . 2 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3626, 35syl6ibr 255 1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3106  wrex 3107  wss 3881  {csn 4525  cop 4531   × cxp 5517  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  [,]cicc 12729  Topctop 21498  neicnei 21702  IIcii 23480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-nei 21703  df-ii 23482
This theorem is referenced by:  cvmlift2lem12  32674
  Copyright terms: Public domain W3C validator