MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1cn Structured version   Visualization version   GIF version

Theorem tx1cn 22214
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))

Proof of Theorem tx1cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7695 . . 3 (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋)
3 ffn 6487 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
4 elpreima 6805 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
6 fvres 6664 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
76eleq1d 2874 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (1st𝑧) ∈ 𝑤))
8 1st2nd2 7710 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
9 xp2nd 7704 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
10 elxp6 7705 . . . . . . . . . . . 12 (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
11 anass 472 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
12 an32 645 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1310, 11, 123bitr2i 302 . . . . . . . . . . 11 (𝑧 ∈ (𝑤 × 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1413baib 539 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
158, 9, 14syl2anc 587 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
167, 15bitr4d 285 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑤 × 𝑌)))
1716pm5.32i 578 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
185, 17bitri 278 . . . . . 6 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
19 toponss 21532 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑤𝑅) → 𝑤𝑋)
2019adantlr 714 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑤𝑋)
21 xpss1 5538 . . . . . . . . 9 (𝑤𝑋 → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2220, 21syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2322sseld 3914 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌)))
2423pm4.71rd 566 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))))
2518, 24bitr4id 293 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑤 × 𝑌)))
2625eqrdv 2796 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑤 × 𝑌))
27 toponmax 21531 . . . . . 6 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2827ad2antlr 726 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑌𝑆)
29 txopn 22207 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑤𝑅𝑌𝑆)) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3029anassrs 471 . . . . 5 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) ∧ 𝑌𝑆) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3128, 30mpdan 686 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3226, 31eqeltrd 2890 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 3149 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
34 txtopon 22196 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
35 simpl 486 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋))
36 iscn 21840 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑅 ∈ (TopOn‘𝑋)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3734, 35, 36syl2anc 587 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
382, 33, 37mpbir2and 712 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  cop 4531   × cxp 5517  ccnv 5518  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-tx 22167
This theorem is referenced by:  txcn  22231  txcmpb  22249  cnmpt1st  22273  sxbrsiga  31658  txsconnlem  32600  txsconn  32601  hausgraph  40156
  Copyright terms: Public domain W3C validator