MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1cn Structured version   Visualization version   GIF version

Theorem tx1cn 23617
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))

Proof of Theorem tx1cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 8038 . . 3 (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋)
3 ffn 6736 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
4 elpreima 7078 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
6 fvres 6925 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
76eleq1d 2826 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (1st𝑧) ∈ 𝑤))
8 1st2nd2 8053 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
9 xp2nd 8047 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
10 elxp6 8048 . . . . . . . . . . . 12 (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
11 anass 468 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
12 an32 646 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1310, 11, 123bitr2i 299 . . . . . . . . . . 11 (𝑧 ∈ (𝑤 × 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1413baib 535 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
158, 9, 14syl2anc 584 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
167, 15bitr4d 282 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑤 × 𝑌)))
1716pm5.32i 574 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
185, 17bitri 275 . . . . . 6 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
19 toponss 22933 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑤𝑅) → 𝑤𝑋)
2019adantlr 715 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑤𝑋)
21 xpss1 5704 . . . . . . . . 9 (𝑤𝑋 → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2220, 21syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2322sseld 3982 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌)))
2423pm4.71rd 562 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))))
2518, 24bitr4id 290 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑤 × 𝑌)))
2625eqrdv 2735 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑤 × 𝑌))
27 toponmax 22932 . . . . . 6 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2827ad2antlr 727 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑌𝑆)
29 txopn 23610 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑤𝑅𝑌𝑆)) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3029anassrs 467 . . . . 5 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) ∧ 𝑌𝑆) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3128, 30mpdan 687 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3226, 31eqeltrd 2841 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 3146 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
34 txtopon 23599 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
35 simpl 482 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋))
36 iscn 23243 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑅 ∈ (TopOn‘𝑋)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3734, 35, 36syl2anc 584 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
382, 33, 37mpbir2and 713 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951  cop 4632   × cxp 5683  ccnv 5684  cres 5687  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  TopOnctopon 22916   Cn ccn 23232   ×t ctx 23568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-tx 23570
This theorem is referenced by:  txcn  23634  txcmpb  23652  cnmpt1st  23676  sxbrsiga  34292  txsconnlem  35245  txsconn  35246  hausgraph  43217
  Copyright terms: Public domain W3C validator