MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1cn Structured version   Visualization version   GIF version

Theorem tx1cn 23524
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))

Proof of Theorem tx1cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7945 . . 3 (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋)
3 ffn 6651 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
4 elpreima 6991 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
6 fvres 6841 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
76eleq1d 2816 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (1st𝑧) ∈ 𝑤))
8 1st2nd2 7960 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
9 xp2nd 7954 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
10 elxp6 7955 . . . . . . . . . . . 12 (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
11 anass 468 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
12 an32 646 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1310, 11, 123bitr2i 299 . . . . . . . . . . 11 (𝑧 ∈ (𝑤 × 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1413baib 535 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
158, 9, 14syl2anc 584 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
167, 15bitr4d 282 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑤 × 𝑌)))
1716pm5.32i 574 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
185, 17bitri 275 . . . . . 6 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
19 toponss 22842 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑤𝑅) → 𝑤𝑋)
2019adantlr 715 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑤𝑋)
21 xpss1 5633 . . . . . . . . 9 (𝑤𝑋 → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2220, 21syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
2322sseld 3928 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌)))
2423pm4.71rd 562 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))))
2518, 24bitr4id 290 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑤 × 𝑌)))
2625eqrdv 2729 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑤 × 𝑌))
27 toponmax 22841 . . . . . 6 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2827ad2antlr 727 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑌𝑆)
29 txopn 23517 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑤𝑅𝑌𝑆)) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3029anassrs 467 . . . . 5 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) ∧ 𝑌𝑆) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3128, 30mpdan 687 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3226, 31eqeltrd 2831 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 3124 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
34 txtopon 23506 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
35 simpl 482 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋))
36 iscn 23150 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑅 ∈ (TopOn‘𝑋)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3734, 35, 36syl2anc 584 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
382, 33, 37mpbir2and 713 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  cop 4579   × cxp 5612  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-tx 23477
This theorem is referenced by:  txcn  23541  txcmpb  23559  cnmpt1st  23583  sxbrsiga  34303  txsconnlem  35284  txsconn  35285  hausgraph  43297
  Copyright terms: Public domain W3C validator