MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1cn Structured version   Visualization version   GIF version

Theorem tx1cn 22976
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ (1st β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝑅 Γ—t 𝑆) Cn 𝑅))

Proof of Theorem tx1cn
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7950 . . 3 (1st β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)βŸΆπ‘‹
21a1i 11 . 2 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ (1st β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)βŸΆπ‘‹)
3 ffn 6673 . . . . . . . 8 ((1st β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)βŸΆπ‘‹ β†’ (1st β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ))
4 elpreima 7013 . . . . . . . 8 ((1st β†Ύ (𝑋 Γ— π‘Œ)) Fn (𝑋 Γ— π‘Œ) β†’ (𝑧 ∈ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ↔ (𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ ((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) ∈ 𝑀)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ↔ (𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ ((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) ∈ 𝑀))
6 fvres 6866 . . . . . . . . . 10 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ ((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) = (1st β€˜π‘§))
76eleq1d 2823 . . . . . . . . 9 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) ∈ 𝑀 ↔ (1st β€˜π‘§) ∈ 𝑀))
8 1st2nd2 7965 . . . . . . . . . 10 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
9 xp2nd 7959 . . . . . . . . . 10 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (2nd β€˜π‘§) ∈ π‘Œ)
10 elxp6 7960 . . . . . . . . . . . 12 (𝑧 ∈ (𝑀 Γ— π‘Œ) ↔ (𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ ((1st β€˜π‘§) ∈ 𝑀 ∧ (2nd β€˜π‘§) ∈ π‘Œ)))
11 anass 470 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ (1st β€˜π‘§) ∈ 𝑀) ∧ (2nd β€˜π‘§) ∈ π‘Œ) ↔ (𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ ((1st β€˜π‘§) ∈ 𝑀 ∧ (2nd β€˜π‘§) ∈ π‘Œ)))
12 an32 645 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ (1st β€˜π‘§) ∈ 𝑀) ∧ (2nd β€˜π‘§) ∈ π‘Œ) ↔ ((𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ (2nd β€˜π‘§) ∈ π‘Œ) ∧ (1st β€˜π‘§) ∈ 𝑀))
1310, 11, 123bitr2i 299 . . . . . . . . . . 11 (𝑧 ∈ (𝑀 Γ— π‘Œ) ↔ ((𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ (2nd β€˜π‘§) ∈ π‘Œ) ∧ (1st β€˜π‘§) ∈ 𝑀))
1413baib 537 . . . . . . . . . 10 ((𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∧ (2nd β€˜π‘§) ∈ π‘Œ) β†’ (𝑧 ∈ (𝑀 Γ— π‘Œ) ↔ (1st β€˜π‘§) ∈ 𝑀))
158, 9, 14syl2anc 585 . . . . . . . . 9 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (𝑧 ∈ (𝑀 Γ— π‘Œ) ↔ (1st β€˜π‘§) ∈ 𝑀))
167, 15bitr4d 282 . . . . . . . 8 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) ∈ 𝑀 ↔ 𝑧 ∈ (𝑀 Γ— π‘Œ)))
1716pm5.32i 576 . . . . . . 7 ((𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ ((1st β†Ύ (𝑋 Γ— π‘Œ))β€˜π‘§) ∈ 𝑀) ↔ (𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ 𝑧 ∈ (𝑀 Γ— π‘Œ)))
185, 17bitri 275 . . . . . 6 (𝑧 ∈ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ↔ (𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ 𝑧 ∈ (𝑀 Γ— π‘Œ)))
19 toponss 22292 . . . . . . . . . 10 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑀 ∈ 𝑅) β†’ 𝑀 βŠ† 𝑋)
2019adantlr 714 . . . . . . . . 9 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ 𝑀 βŠ† 𝑋)
21 xpss1 5657 . . . . . . . . 9 (𝑀 βŠ† 𝑋 β†’ (𝑀 Γ— π‘Œ) βŠ† (𝑋 Γ— π‘Œ))
2220, 21syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (𝑀 Γ— π‘Œ) βŠ† (𝑋 Γ— π‘Œ))
2322sseld 3948 . . . . . . 7 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (𝑧 ∈ (𝑀 Γ— π‘Œ) β†’ 𝑧 ∈ (𝑋 Γ— π‘Œ)))
2423pm4.71rd 564 . . . . . 6 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (𝑧 ∈ (𝑀 Γ— π‘Œ) ↔ (𝑧 ∈ (𝑋 Γ— π‘Œ) ∧ 𝑧 ∈ (𝑀 Γ— π‘Œ))))
2518, 24bitr4id 290 . . . . 5 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (𝑧 ∈ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ↔ 𝑧 ∈ (𝑀 Γ— π‘Œ)))
2625eqrdv 2735 . . . 4 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) = (𝑀 Γ— π‘Œ))
27 toponmax 22291 . . . . . 6 (𝑆 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝑆)
2827ad2antlr 726 . . . . 5 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ π‘Œ ∈ 𝑆)
29 txopn 22969 . . . . . 6 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑀 ∈ 𝑅 ∧ π‘Œ ∈ 𝑆)) β†’ (𝑀 Γ— π‘Œ) ∈ (𝑅 Γ—t 𝑆))
3029anassrs 469 . . . . 5 ((((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) ∧ π‘Œ ∈ 𝑆) β†’ (𝑀 Γ— π‘Œ) ∈ (𝑅 Γ—t 𝑆))
3128, 30mpdan 686 . . . 4 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (𝑀 Γ— π‘Œ) ∈ (𝑅 Γ—t 𝑆))
3226, 31eqeltrd 2838 . . 3 (((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑀 ∈ 𝑅) β†’ (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ∈ (𝑅 Γ—t 𝑆))
3332ralrimiva 3144 . 2 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ βˆ€π‘€ ∈ 𝑅 (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ∈ (𝑅 Γ—t 𝑆))
34 txtopon 22958 . . 3 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝑅 Γ—t 𝑆) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
35 simpl 484 . . 3 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ 𝑅 ∈ (TopOnβ€˜π‘‹))
36 iscn 22602 . . 3 (((𝑅 Γ—t 𝑆) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)) ∧ 𝑅 ∈ (TopOnβ€˜π‘‹)) β†’ ((1st β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝑅 Γ—t 𝑆) Cn 𝑅) ↔ ((1st β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)βŸΆπ‘‹ ∧ βˆ€π‘€ ∈ 𝑅 (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ∈ (𝑅 Γ—t 𝑆))))
3734, 35, 36syl2anc 585 . 2 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ ((1st β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝑅 Γ—t 𝑆) Cn 𝑅) ↔ ((1st β†Ύ (𝑋 Γ— π‘Œ)):(𝑋 Γ— π‘Œ)βŸΆπ‘‹ ∧ βˆ€π‘€ ∈ 𝑅 (β—‘(1st β†Ύ (𝑋 Γ— π‘Œ)) β€œ 𝑀) ∈ (𝑅 Γ—t 𝑆))))
382, 33, 37mpbir2and 712 1 ((𝑅 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 ∈ (TopOnβ€˜π‘Œ)) β†’ (1st β†Ύ (𝑋 Γ— π‘Œ)) ∈ ((𝑅 Γ—t 𝑆) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065   βŠ† wss 3915  βŸ¨cop 4597   Γ— cxp 5636  β—‘ccnv 5637   β†Ύ cres 5640   β€œ cima 5641   Fn wfn 6496  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362  1st c1st 7924  2nd c2nd 7925  TopOnctopon 22275   Cn ccn 22591   Γ—t ctx 22927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774  df-topgen 17332  df-top 22259  df-topon 22276  df-bases 22312  df-cn 22594  df-tx 22929
This theorem is referenced by:  txcn  22993  txcmpb  23011  cnmpt1st  23035  sxbrsiga  32930  txsconnlem  33874  txsconn  33875  hausgraph  41568
  Copyright terms: Public domain W3C validator