MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamures Structured version   Visualization version   GIF version

Theorem mamures 22112
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mamures.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamures.g 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
mamures.b 𝐵 = (Base‘𝑅)
mamures.r (𝜑𝑅𝑉)
mamures.m (𝜑𝑀 ∈ Fin)
mamures.n (𝜑𝑁 ∈ Fin)
mamures.p (𝜑𝑃 ∈ Fin)
mamures.i (𝜑𝐼𝑀)
mamures.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamures.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamures (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))

Proof of Theorem mamures
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamures.i . . . 4 (𝜑𝐼𝑀)
2 ssidd 4005 . . . 4 (𝜑𝑃𝑃)
3 resmpo 7530 . . . 4 ((𝐼𝑀𝑃𝑃) → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
41, 2, 3syl2anc 584 . . 3 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
5 ovres 7575 . . . . . . . . 9 ((𝑖𝐼𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
653ad2antl2 1186 . . . . . . . 8 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
76eqcomd 2738 . . . . . . 7 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) = (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘))
87oveq1d 7426 . . . . . 6 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)) = ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))
98mpteq2dva 5248 . . . . 5 ((𝜑𝑖𝐼𝑗𝑃) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))
109oveq2d 7427 . . . 4 ((𝜑𝑖𝐼𝑗𝑃) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))))
1110mpoeq3dva 7488 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
124, 11eqtrd 2772 . 2 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
13 mamures.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
14 mamures.b . . . 4 𝐵 = (Base‘𝑅)
15 eqid 2732 . . . 4 (.r𝑅) = (.r𝑅)
16 mamures.r . . . 4 (𝜑𝑅𝑉)
17 mamures.m . . . 4 (𝜑𝑀 ∈ Fin)
18 mamures.n . . . 4 (𝜑𝑁 ∈ Fin)
19 mamures.p . . . 4 (𝜑𝑃 ∈ Fin)
20 mamures.x . . . 4 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
21 mamures.y . . . 4 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
2213, 14, 15, 16, 17, 18, 19, 20, 21mamuval 22108 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
2322reseq1d 5980 . 2 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)))
24 mamures.g . . 3 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
2517, 1ssfid 9269 . . 3 (𝜑𝐼 ∈ Fin)
26 elmapi 8845 . . . . . 6 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
2720, 26syl 17 . . . . 5 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
28 xpss1 5695 . . . . . 6 (𝐼𝑀 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
291, 28syl 17 . . . . 5 (𝜑 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
3027, 29fssresd 6758 . . . 4 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵)
3114fvexi 6905 . . . . . 6 𝐵 ∈ V
3231a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
33 xpfi 9319 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐼 × 𝑁) ∈ Fin)
3425, 18, 33syl2anc 584 . . . . 5 (𝜑 → (𝐼 × 𝑁) ∈ Fin)
3532, 34elmapd 8836 . . . 4 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)) ↔ (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵))
3630, 35mpbird 256 . . 3 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)))
3724, 14, 15, 16, 25, 18, 19, 36, 21mamuval 22108 . 2 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
3812, 23, 373eqtr4d 2782 1 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  cotp 4636  cmpt 5231   × cxp 5674  cres 5678  wf 6539  cfv 6543  (class class class)co 7411  cmpo 7413  m cmap 8822  Fincfn 8941  Basecbs 17148  .rcmulr 17202   Σg cgsu 17390   maMul cmmul 22105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-map 8824  df-en 8942  df-fin 8945  df-mamu 22106
This theorem is referenced by:  mdetmul  22345
  Copyright terms: Public domain W3C validator