MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamures Structured version   Visualization version   GIF version

Theorem mamures 20611
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mamures.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamures.g 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
mamures.b 𝐵 = (Base‘𝑅)
mamures.r (𝜑𝑅𝑉)
mamures.m (𝜑𝑀 ∈ Fin)
mamures.n (𝜑𝑁 ∈ Fin)
mamures.p (𝜑𝑃 ∈ Fin)
mamures.i (𝜑𝐼𝑀)
mamures.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamures.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
Assertion
Ref Expression
mamures (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))

Proof of Theorem mamures
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamures.i . . . 4 (𝜑𝐼𝑀)
2 ssidd 3843 . . . 4 (𝜑𝑃𝑃)
3 resmpt2 7037 . . . 4 ((𝐼𝑀𝑃𝑃) → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
41, 2, 3syl2anc 579 . . 3 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
5 ovres 7079 . . . . . . . . 9 ((𝑖𝐼𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
653ad2antl2 1194 . . . . . . . 8 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
76eqcomd 2784 . . . . . . 7 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) = (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘))
87oveq1d 6939 . . . . . 6 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)) = ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))
98mpteq2dva 4981 . . . . 5 ((𝜑𝑖𝐼𝑗𝑃) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))
109oveq2d 6940 . . . 4 ((𝜑𝑖𝐼𝑗𝑃) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))))
1110mpt2eq3dva 6998 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
124, 11eqtrd 2814 . 2 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
13 mamures.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
14 mamures.b . . . 4 𝐵 = (Base‘𝑅)
15 eqid 2778 . . . 4 (.r𝑅) = (.r𝑅)
16 mamures.r . . . 4 (𝜑𝑅𝑉)
17 mamures.m . . . 4 (𝜑𝑀 ∈ Fin)
18 mamures.n . . . 4 (𝜑𝑁 ∈ Fin)
19 mamures.p . . . 4 (𝜑𝑃 ∈ Fin)
20 mamures.x . . . 4 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
21 mamures.y . . . 4 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
2213, 14, 15, 16, 17, 18, 19, 20, 21mamuval 20607 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
2322reseq1d 5643 . 2 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)))
24 mamures.g . . 3 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
2517, 1ssfid 8473 . . 3 (𝜑𝐼 ∈ Fin)
26 elmapi 8164 . . . . . 6 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
2720, 26syl 17 . . . . 5 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
28 xpss1 5376 . . . . . 6 (𝐼𝑀 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
291, 28syl 17 . . . . 5 (𝜑 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
3027, 29fssresd 6323 . . . 4 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵)
3114fvexi 6462 . . . . . 6 𝐵 ∈ V
3231a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
33 xpfi 8521 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐼 × 𝑁) ∈ Fin)
3425, 18, 33syl2anc 579 . . . . 5 (𝜑 → (𝐼 × 𝑁) ∈ Fin)
3532, 34elmapd 8156 . . . 4 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵𝑚 (𝐼 × 𝑁)) ↔ (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵))
3630, 35mpbird 249 . . 3 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵𝑚 (𝐼 × 𝑁)))
3724, 14, 15, 16, 25, 18, 19, 36, 21mamuval 20607 . 2 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
3812, 23, 373eqtr4d 2824 1 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  wss 3792  cotp 4406  cmpt 4967   × cxp 5355  cres 5359  wf 6133  cfv 6137  (class class class)co 6924  cmpt2 6926  𝑚 cmap 8142  Fincfn 8243  Basecbs 16266  .rcmulr 16350   Σg cgsu 16498   maMul cmmul 20604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-fin 8247  df-mamu 20605
This theorem is referenced by:  mdetmul  20845
  Copyright terms: Public domain W3C validator