MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamures Structured version   Visualization version   GIF version

Theorem mamures 21883
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mamures.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamures.g 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
mamures.b 𝐵 = (Base‘𝑅)
mamures.r (𝜑𝑅𝑉)
mamures.m (𝜑𝑀 ∈ Fin)
mamures.n (𝜑𝑁 ∈ Fin)
mamures.p (𝜑𝑃 ∈ Fin)
mamures.i (𝜑𝐼𝑀)
mamures.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamures.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamures (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))

Proof of Theorem mamures
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamures.i . . . 4 (𝜑𝐼𝑀)
2 ssidd 4004 . . . 4 (𝜑𝑃𝑃)
3 resmpo 7524 . . . 4 ((𝐼𝑀𝑃𝑃) → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
41, 2, 3syl2anc 584 . . 3 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
5 ovres 7569 . . . . . . . . 9 ((𝑖𝐼𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
653ad2antl2 1186 . . . . . . . 8 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
76eqcomd 2738 . . . . . . 7 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) = (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘))
87oveq1d 7420 . . . . . 6 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)) = ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))
98mpteq2dva 5247 . . . . 5 ((𝜑𝑖𝐼𝑗𝑃) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))
109oveq2d 7421 . . . 4 ((𝜑𝑖𝐼𝑗𝑃) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))))
1110mpoeq3dva 7482 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
124, 11eqtrd 2772 . 2 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
13 mamures.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
14 mamures.b . . . 4 𝐵 = (Base‘𝑅)
15 eqid 2732 . . . 4 (.r𝑅) = (.r𝑅)
16 mamures.r . . . 4 (𝜑𝑅𝑉)
17 mamures.m . . . 4 (𝜑𝑀 ∈ Fin)
18 mamures.n . . . 4 (𝜑𝑁 ∈ Fin)
19 mamures.p . . . 4 (𝜑𝑃 ∈ Fin)
20 mamures.x . . . 4 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
21 mamures.y . . . 4 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
2213, 14, 15, 16, 17, 18, 19, 20, 21mamuval 21879 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
2322reseq1d 5978 . 2 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)))
24 mamures.g . . 3 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
2517, 1ssfid 9263 . . 3 (𝜑𝐼 ∈ Fin)
26 elmapi 8839 . . . . . 6 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
2720, 26syl 17 . . . . 5 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
28 xpss1 5694 . . . . . 6 (𝐼𝑀 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
291, 28syl 17 . . . . 5 (𝜑 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
3027, 29fssresd 6755 . . . 4 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵)
3114fvexi 6902 . . . . . 6 𝐵 ∈ V
3231a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
33 xpfi 9313 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐼 × 𝑁) ∈ Fin)
3425, 18, 33syl2anc 584 . . . . 5 (𝜑 → (𝐼 × 𝑁) ∈ Fin)
3532, 34elmapd 8830 . . . 4 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)) ↔ (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵))
3630, 35mpbird 256 . . 3 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)))
3724, 14, 15, 16, 25, 18, 19, 36, 21mamuval 21879 . 2 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
3812, 23, 373eqtr4d 2782 1 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947  cotp 4635  cmpt 5230   × cxp 5673  cres 5677  wf 6536  cfv 6540  (class class class)co 7405  cmpo 7407  m cmap 8816  Fincfn 8935  Basecbs 17140  .rcmulr 17194   Σg cgsu 17382   maMul cmmul 21876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-map 8818  df-en 8936  df-fin 8939  df-mamu 21877
This theorem is referenced by:  mdetmul  22116
  Copyright terms: Public domain W3C validator