New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > breq2 | GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
breq2 | ⊢ (A = B → (CRA ↔ CRB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4580 | . . 3 ⊢ (A = B → 〈C, A〉 = 〈C, B〉) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (A = B → (〈C, A〉 ∈ R ↔ 〈C, B〉 ∈ R)) |
3 | df-br 4641 | . 2 ⊢ (CRA ↔ 〈C, A〉 ∈ R) | |
4 | df-br 4641 | . 2 ⊢ (CRB ↔ 〈C, B〉 ∈ R) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (CRA ↔ CRB)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 〈cop 4562 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 |
This theorem is referenced by: breq12 4645 breq2i 4648 breq2d 4652 nbrne1 4657 elima 4755 vtoclr 4817 brco 4884 brcnv 4893 dfdmf 4906 dfrnf 4963 dfres2 5003 elimasn 5020 intirr 5030 df2nd2 5112 dffun3 5121 dffun6f 5124 fun11 5160 fv3 5342 tz6.12-1 5345 tz6.12c 5348 tz6.12i 5349 funfv2f 5378 isorel 5490 isocnv 5492 isotr 5496 f1oiso 5500 f1oiso2 5501 opbr1st 5502 opbr2nd 5503 caovord 5630 brsnsi 5774 brsnsi2 5777 trtxp 5782 addcfnex 5825 brfns 5834 qrpprod 5837 fnfullfunlem1 5857 fvfullfunlem1 5862 clos1conn 5880 clos1basesuc 5883 trd 5922 extd 5924 symd 5925 antid 5930 connexd 5932 idssen 6041 enadj 6061 enpw1lem1 6062 enpw1 6063 enmap2lem1 6064 enmap2 6069 enmap1lem1 6070 enprmaplem3 6079 enpw 6088 ovmuc 6131 mucex 6134 1cnc 6140 ovcelem1 6172 ceex 6175 sbthlem2 6205 dflec2 6211 lectr 6212 nc0le1 6217 leconnnc 6219 taddc 6230 tlecg 6231 ce2le 6234 nclenn 6250 nnltp1clem1 6262 lecadd2 6267 ncslesuc 6268 nmembers1lem1 6269 nmembers1lem3 6271 nmembers1 6272 nchoicelem4 6293 nchoicelem11 6300 nchoicelem19 6308 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |