MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Visualization version   GIF version

Theorem logcnlem4 24108
Description: Lemma for logcn 24110. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem4 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8 (𝜑𝐴𝐷)
2 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
32ellogdm 24102 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
43simplbi 474 . . . . . . . 8 (𝐴𝐷𝐴 ∈ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
62logdmn0 24103 . . . . . . . 8 (𝐴𝐷𝐴 ≠ 0)
71, 6syl 17 . . . . . . 7 (𝜑𝐴 ≠ 0)
85, 7logcld 24038 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
98imcld 13729 . . . . 5 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
109recnd 9924 . . . 4 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
11 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
122ellogdm 24102 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
1312simplbi 474 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
1411, 13syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
152logdmn0 24103 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
1611, 15syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
1714, 16logcld 24038 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1817imcld 13729 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1918recnd 9924 . . . 4 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2010, 19abssubd 13986 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
2117, 8imsubd 13751 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
22 efsub 14615 . . . . . . . . . 10 (((log‘𝐵) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
2317, 8, 22syl2anc 690 . . . . . . . . 9 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
24 eflog 24044 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
2514, 16, 24syl2anc 690 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐵)) = 𝐵)
26 eflog 24044 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
275, 7, 26syl2anc 690 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
2825, 27oveq12d 6545 . . . . . . . . 9 (𝜑 → ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))) = (𝐵 / 𝐴))
2923, 28eqtrd 2643 . . . . . . . 8 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴))
3014, 5, 7divcld 10650 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
3114, 5, 16, 7divne0d 10666 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ≠ 0)
3217, 8subcld 10243 . . . . . . . . . 10 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ℂ)
33 logcnlem.s . . . . . . . . . . . . 13 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
34 logcnlem.t . . . . . . . . . . . . 13 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
35 logcnlem.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ+)
36 logcnlem.l . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
372, 33, 34, 1, 35, 11, 36logcnlem3 24107 . . . . . . . . . . . 12 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
3837simpld 473 . . . . . . . . . . 11 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3938, 21breqtrrd 4605 . . . . . . . . . 10 (𝜑 → -π < (ℑ‘((log‘𝐵) − (log‘𝐴))))
4037simprd 477 . . . . . . . . . . 11 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
4121, 40eqbrtrd 4599 . . . . . . . . . 10 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π)
42 ellogrn 24027 . . . . . . . . . 10 (((log‘𝐵) − (log‘𝐴)) ∈ ran log ↔ (((log‘𝐵) − (log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐵) − (log‘𝐴))) ∧ (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π))
4332, 39, 41, 42syl3anbrc 1238 . . . . . . . . 9 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ran log)
44 logeftb 24051 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ (𝐵 / 𝐴) ≠ 0 ∧ ((log‘𝐵) − (log‘𝐴)) ∈ ran log) → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4530, 31, 43, 44syl3anc 1317 . . . . . . . 8 (𝜑 → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4629, 45mpbird 245 . . . . . . 7 (𝜑 → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
4746eqcomd 2615 . . . . . 6 (𝜑 → ((log‘𝐵) − (log‘𝐴)) = (log‘(𝐵 / 𝐴)))
4847fveq2d 6092 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
4921, 48eqtr3d 2645 . . . 4 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
5049fveq2d 6092 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5120, 50eqtrd 2643 . 2 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5230, 31logcld 24038 . . . . . 6 (𝜑 → (log‘(𝐵 / 𝐴)) ∈ ℂ)
5352imcld 13729 . . . . 5 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℝ)
5453recnd 9924 . . . 4 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℂ)
5554abscld 13969 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
56 0red 9897 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
57 1re 9895 . . . . . . . . . . 11 1 ∈ ℝ
585, 14subcld 10243 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ∈ ℂ)
5958abscld 13969 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
605, 7absrpcld 13981 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6159, 60rerpdivcld 11735 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ)
62 resubcl 10196 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ) → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6357, 61, 62sylancr 693 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6430recld 13728 . . . . . . . . . 10 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℝ)
655abscld 13969 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐴) ∈ ℝ)
6635rpred 11704 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℝ)
67 1rp 11668 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
68 rpaddcl 11686 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
6967, 35, 68sylancr 693 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + 𝑅) ∈ ℝ+)
7066, 69rerpdivcld 11735 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
7165, 70remulcld 9926 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
7234, 71syl5eqel 2691 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
73 rpre 11671 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7473adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
755imcld 13729 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
7675recnd 9924 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7776abscld 13969 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7877adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7974, 78ifclda 4069 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
8033, 79syl5eqel 2691 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
81 ltmin 11858 . . . . . . . . . . . . . . . . 17 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8259, 80, 72, 81syl3anc 1317 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8336, 82mpbid 220 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇))
8483simprd 477 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) < 𝑇)
8569rpred 11704 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ)
8666ltp1d 10803 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 < (𝑅 + 1))
8766recnd 9924 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℂ)
88 ax-1cn 9850 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 addcom 10073 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 + 1) = (1 + 𝑅))
9087, 88, 89sylancl 692 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 + 1) = (1 + 𝑅))
9186, 90breqtrd 4603 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 < (1 + 𝑅))
9266, 85, 91ltled 10036 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ≤ (1 + 𝑅))
9385recnd 9924 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℂ)
9493mulid1d 9913 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + 𝑅) · 1) = (1 + 𝑅))
9592, 94breqtrrd 4605 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≤ ((1 + 𝑅) · 1))
9657a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
9766, 96, 69ledivmuld 11757 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ 𝑅 ≤ ((1 + 𝑅) · 1)))
9895, 97mpbird 245 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 / (1 + 𝑅)) ≤ 1)
9970, 96, 60lemul2d 11748 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1)))
10098, 99mpbid 220 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1))
10165recnd 9924 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐴) ∈ ℂ)
102101mulid1d 9913 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
103100, 102breqtrd 4603 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ (abs‘𝐴))
10434, 103syl5eqbr 4612 . . . . . . . . . . . . . 14 (𝜑𝑇 ≤ (abs‘𝐴))
10559, 72, 65, 84, 104ltletrd 10048 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < (abs‘𝐴))
106105, 102breqtrrd 4605 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1))
10759, 96, 60ltdivmuld 11755 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1)))
108106, 107mpbird 245 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1)
109 posdif 10370 . . . . . . . . . . . 12 ((((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
11061, 57, 109sylancl 692 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
111108, 110mpbid 220 . . . . . . . . . 10 (𝜑 → 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
11258, 5, 7divcld 10650 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) / 𝐴) ∈ ℂ)
113112releabsd 13984 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) ≤ (abs‘((𝐴𝐵) / 𝐴)))
1145, 14, 5, 7divsubdird 10689 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝐵) / 𝐴) = ((𝐴 / 𝐴) − (𝐵 / 𝐴)))
1155, 7dividd 10648 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 𝐴) = 1)
116115oveq1d 6542 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 𝐴) − (𝐵 / 𝐴)) = (1 − (𝐵 / 𝐴)))
117114, 116eqtrd 2643 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐵) / 𝐴) = (1 − (𝐵 / 𝐴)))
118117fveq2d 6092 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (ℜ‘(1 − (𝐵 / 𝐴))))
119 resub 13661 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
12088, 30, 119sylancr 693 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
121118, 120eqtrd 2643 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
122 re1 13688 . . . . . . . . . . . . . 14 (ℜ‘1) = 1
123122oveq1i 6537 . . . . . . . . . . . . 13 ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))) = (1 − (ℜ‘(𝐵 / 𝐴)))
124121, 123syl6eq 2659 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (1 − (ℜ‘(𝐵 / 𝐴))))
12558, 5, 7absdivd 13988 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴𝐵) / 𝐴)) = ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
126113, 124, 1253brtr3d 4608 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
12796, 64, 61, 126subled 10479 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ≤ (ℜ‘(𝐵 / 𝐴)))
12856, 63, 64, 111, 127ltletrd 10048 . . . . . . . . 9 (𝜑 → 0 < (ℜ‘(𝐵 / 𝐴)))
129 argregt0 24077 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ 0 < (ℜ‘(𝐵 / 𝐴))) → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
13030, 128, 129syl2anc 690 . . . . . . . 8 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
131 cosq14gt0 23983 . . . . . . . 8 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
132130, 131syl 17 . . . . . . 7 (𝜑 → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
133132gt0ne0d 10441 . . . . . 6 (𝜑 → (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≠ 0)
13453, 133retancld 14660 . . . . 5 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
135134recnd 9924 . . . 4 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℂ)
136135abscld 13969 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) ∈ ℝ)
137 tanabsge 23979 . . . 4 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
138130, 137syl 17 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
139128gt0ne0d 10441 . . . . . . 7 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ≠ 0)
140 tanarg 24086 . . . . . . 7 (((𝐵 / 𝐴) ∈ ℂ ∧ (ℜ‘(𝐵 / 𝐴)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
14130, 139, 140syl2anc 690 . . . . . 6 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
142141fveq2d 6092 . . . . 5 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))))
14330imcld 13729 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℝ)
144143recnd 9924 . . . . . 6 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℂ)
14564recnd 9924 . . . . . 6 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℂ)
146144, 145, 139absdivd 13988 . . . . 5 (𝜑 → (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))))
14756, 64, 128ltled 10036 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘(𝐵 / 𝐴)))
14864, 147absidd 13955 . . . . . 6 (𝜑 → (abs‘(ℜ‘(𝐵 / 𝐴))) = (ℜ‘(𝐵 / 𝐴)))
149148oveq2d 6543 . . . . 5 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
150142, 146, 1493eqtrd 2647 . . . 4 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
151144abscld 13969 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ)
15264, 66remulcld 9926 . . . . . 6 (𝜑 → ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ∈ ℝ)
15314, 5subcld 10243 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℂ)
154153, 5, 7divcld 10650 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 𝐴) ∈ ℂ)
155 absimle 13843 . . . . . . . 8 (((𝐵𝐴) / 𝐴) ∈ ℂ → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
156154, 155syl 17 . . . . . . 7 (𝜑 → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
15714, 5, 5, 7divsubdird 10689 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − (𝐴 / 𝐴)))
158115oveq2d 6543 . . . . . . . . . . 11 (𝜑 → ((𝐵 / 𝐴) − (𝐴 / 𝐴)) = ((𝐵 / 𝐴) − 1))
159157, 158eqtrd 2643 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − 1))
160159fveq2d 6092 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵𝐴) / 𝐴)) = (ℑ‘((𝐵 / 𝐴) − 1)))
161 imsub 13669 . . . . . . . . . . 11 (((𝐵 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
16230, 88, 161sylancl 692 . . . . . . . . . 10 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
163 im1 13689 . . . . . . . . . . 11 (ℑ‘1) = 0
164163oveq2i 6538 . . . . . . . . . 10 ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)) = ((ℑ‘(𝐵 / 𝐴)) − 0)
165162, 164syl6eq 2659 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − 0))
166144subid1d 10232 . . . . . . . . 9 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) − 0) = (ℑ‘(𝐵 / 𝐴)))
167160, 165, 1663eqtrrd 2648 . . . . . . . 8 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = (ℑ‘((𝐵𝐴) / 𝐴)))
168167fveq2d 6092 . . . . . . 7 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) = (abs‘(ℑ‘((𝐵𝐴) / 𝐴))))
1695, 14abssubd 13986 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
170169oveq1d 6542 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
171153, 5, 7absdivd 13988 . . . . . . . 8 (𝜑 → (abs‘((𝐵𝐴) / 𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
172170, 171eqtr4d 2646 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = (abs‘((𝐵𝐴) / 𝐴)))
173156, 168, 1723brtr4d 4609 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
17465, 59resubcld 10309 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ∈ ℝ)
175174, 66remulcld 9926 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ∈ ℝ)
17665, 152remulcld 9926 . . . . . . . 8 (𝜑 → ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)) ∈ ℝ)
17759recnd 9924 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
17888a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
179177, 178, 87adddid 9920 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)))
180177mulid1d 9913 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴𝐵)) · 1) = (abs‘(𝐴𝐵)))
181180oveq1d 6542 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
182179, 181eqtrd 2643 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
18369rpne0d 11709 . . . . . . . . . . . . . . 15 (𝜑 → (1 + 𝑅) ≠ 0)
184101, 87, 93, 183divassd 10685 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))))
185184, 34syl6eqr 2661 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = 𝑇)
18684, 185breqtrrd 4605 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅)))
18765, 66remulcld 9926 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐴) · 𝑅) ∈ ℝ)
18859, 187, 69ltmuldivd 11751 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅))))
189186, 188mpbird 245 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅))
190182, 189eqbrtrrd 4601 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅))
19159, 66remulcld 9926 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · 𝑅) ∈ ℝ)
19259, 191, 187ltaddsubd 10476 . . . . . . . . . 10 (𝜑 → (((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅))))
193190, 192mpbid 220 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
194101, 177, 87subdird 10337 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) = (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
195193, 194breqtrrd 4605 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅))
19660rpne0d 11709 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐴) ≠ 0)
197101, 177, 101, 196divsubdird 10689 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
198101, 196dividd 10648 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝐴) / (abs‘𝐴)) = 1)
199198oveq1d 6542 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
200197, 199eqtrd 2643 . . . . . . . . . . . 12 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
201200, 127eqbrtrd 4599 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)))
202174, 64, 60ledivmuld 11757 . . . . . . . . . . 11 (𝜑 → ((((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)) ↔ ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴)))))
203201, 202mpbid 220 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))))
20465, 64remulcld 9926 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ∈ ℝ)
205174, 204, 35lemul1d 11747 . . . . . . . . . 10 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ↔ (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅)))
206203, 205mpbid 220 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅))
207101, 145, 87mulassd 9919 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅) = ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
208206, 207breqtrd 4603 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
20959, 175, 176, 195, 208ltletrd 10048 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
21059, 152, 60ltdivmuld 11755 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅))))
211209, 210mpbird 245 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
212151, 61, 152, 173, 211lelttrd 10046 . . . . 5 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
213 ltdivmul 10747 . . . . . 6 (((abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((ℜ‘(𝐵 / 𝐴)) ∈ ℝ ∧ 0 < (ℜ‘(𝐵 / 𝐴)))) → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
214151, 66, 64, 128, 213syl112anc 1321 . . . . 5 (𝜑 → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
215212, 214mpbird 245 . . . 4 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅)
216150, 215eqbrtrd 4599 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) < 𝑅)
21755, 136, 66, 138, 216lelttrd 10046 . 2 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) < 𝑅)
21851, 217eqbrtrd 4599 1 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  cdif 3536  ifcif 4035   class class class wbr 4577  ran crn 5029  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  -∞cmnf 9928   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10533  2c2 10917  +crp 11664  (,)cioo 12002  (,]cioc 12003  cre 13631  cim 13632  abscabs 13768  expce 14577  cosccos 14580  tanctan 14581  πcpi 14582  logclog 24022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-tan 14587  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024
This theorem is referenced by:  logcnlem5  24109
  Copyright terms: Public domain W3C validator