ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2c Unicode version

Theorem clim2c 11247
Description: Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim2.1  |-  Z  =  ( ZZ>= `  M )
clim2.2  |-  ( ph  ->  M  e.  ZZ )
clim2.3  |-  ( ph  ->  F  e.  V )
clim2.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
clim2c.5  |-  ( ph  ->  A  e.  CC )
clim2c.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
Assertion
Ref Expression
clim2c  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x )
)
Distinct variable groups:    j, k, x, A    j, F, k, x    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim2c
StepHypRef Expression
1 clim2c.5 . . 3  |-  ( ph  ->  A  e.  CC )
21biantrurd 303 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
3 clim2.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
43uztrn2 9504 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
5 clim2c.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
65biantrurd 303 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
74, 6sylan2 284 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
87anassrs 398 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( B  -  A ) )  < 
x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
98ralbidva 2466 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  A ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
109rexbidva 2467 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
1110ralbidv 2470 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  A ) )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
12 clim2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
13 clim2.3 . . 3  |-  ( ph  ->  F  e.  V )
14 clim2.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
153, 12, 13, 14clim2 11246 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
162, 11, 153bitr4rd 220 1  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772    < clt 7954    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-clim 11242
This theorem is referenced by:  clim0c  11249  climconst  11253  2clim  11264  climcn1  11271  climcn2  11272  climsqz  11298  climsqz2  11299  climrecvg1n  11311
  Copyright terms: Public domain W3C validator