ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2c Unicode version

Theorem clim2c 11427
Description: Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim2.1  |-  Z  =  ( ZZ>= `  M )
clim2.2  |-  ( ph  ->  M  e.  ZZ )
clim2.3  |-  ( ph  ->  F  e.  V )
clim2.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
clim2c.5  |-  ( ph  ->  A  e.  CC )
clim2c.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
Assertion
Ref Expression
clim2c  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x )
)
Distinct variable groups:    j, k, x, A    j, F, k, x    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim2c
StepHypRef Expression
1 clim2c.5 . . 3  |-  ( ph  ->  A  e.  CC )
21biantrurd 305 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
3 clim2.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
43uztrn2 9610 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
5 clim2c.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
65biantrurd 305 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
74, 6sylan2 286 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
87anassrs 400 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( B  -  A ) )  < 
x  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
98ralbidva 2490 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  A ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
109rexbidva 2491 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
1110ralbidv 2494 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  A ) )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
12 clim2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
13 clim2.3 . . 3  |-  ( ph  ->  F  e.  V )
14 clim2.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
153, 12, 13, 14clim2 11426 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
162, 11, 153bitr4rd 221 1  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  A )
)  <  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870    < clt 8054    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   abscabs 11141    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-clim 11422
This theorem is referenced by:  clim0c  11429  climconst  11433  2clim  11444  climcn1  11451  climcn2  11452  climsqz  11478  climsqz2  11479  climrecvg1n  11491
  Copyright terms: Public domain W3C validator