ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climabs0 Unicode version

Theorem climabs0 11472
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1  |-  Z  =  ( ZZ>= `  M )
climabs0.2  |-  ( ph  ->  M  e.  ZZ )
climabs0.3  |-  ( ph  ->  F  e.  V )
climabs0.4  |-  ( ph  ->  G  e.  W )
climabs0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climabs0.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
climabs0  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Distinct variable groups:    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climabs0
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
21uztrn2 9619 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3 climabs0.5 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4 absidm 11263 . . . . . . . . 9  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
53, 4syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
65breq1d 4043 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
72, 6sylan2 286 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
87anassrs 400 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( abs `  ( F `  k )
) )  <  x  <->  ( abs `  ( F `
 k ) )  <  x ) )
98ralbidva 2493 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  x ) )
109rexbidva 2494 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
1110ralbidv 2497 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  x
) )
12 climabs0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
13 climabs0.4 . . 3  |-  ( ph  ->  G  e.  W )
14 climabs0.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
153abscld 11346 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
1615recnd 8055 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  CC )
171, 12, 13, 14, 16clim0c 11451 . 2  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x ) )
18 climabs0.3 . . 3  |-  ( ph  ->  F  e.  V )
19 eqidd 2197 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
201, 12, 18, 19, 3clim0c 11451 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
2111, 17, 203bitr4rd 221 1  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   ` cfv 5258   CCcc 7877   0cc0 7879    < clt 8061   ZZcz 9326   ZZ>=cuz 9601   RR+crp 9728   abscabs 11162    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  expcnvap0  11667  expcnv  11669  explecnv  11670
  Copyright terms: Public domain W3C validator