ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climabs0 Unicode version

Theorem climabs0 11489
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1  |-  Z  =  ( ZZ>= `  M )
climabs0.2  |-  ( ph  ->  M  e.  ZZ )
climabs0.3  |-  ( ph  ->  F  e.  V )
climabs0.4  |-  ( ph  ->  G  e.  W )
climabs0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climabs0.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
climabs0  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Distinct variable groups:    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climabs0
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
21uztrn2 9636 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3 climabs0.5 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4 absidm 11280 . . . . . . . . 9  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
53, 4syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
65breq1d 4044 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
72, 6sylan2 286 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
87anassrs 400 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( abs `  ( F `  k )
) )  <  x  <->  ( abs `  ( F `
 k ) )  <  x ) )
98ralbidva 2493 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  x ) )
109rexbidva 2494 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
1110ralbidv 2497 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  x
) )
12 climabs0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
13 climabs0.4 . . 3  |-  ( ph  ->  G  e.  W )
14 climabs0.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
153abscld 11363 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
1615recnd 8072 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  CC )
171, 12, 13, 14, 16clim0c 11468 . 2  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x ) )
18 climabs0.3 . . 3  |-  ( ph  ->  F  e.  V )
19 eqidd 2197 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
201, 12, 18, 19, 3clim0c 11468 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
2111, 17, 203bitr4rd 221 1  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4034   ` cfv 5259   CCcc 7894   0cc0 7896    < clt 8078   ZZcz 9343   ZZ>=cuz 9618   RR+crp 9745   abscabs 11179    ~~> cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461
This theorem is referenced by:  expcnvap0  11684  expcnv  11686  explecnv  11687
  Copyright terms: Public domain W3C validator