ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl Unicode version

Theorem caucvgprlemcanl 7728
Description: Lemma for cauappcvgprlemladdrl 7741. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l  |-  ( ph  ->  L  e.  P. )
caucvgprlemcanl.s  |-  ( ph  ->  S  e.  Q. )
caucvgprlemcanl.r  |-  ( ph  ->  R  e.  Q. )
caucvgprlemcanl.q  |-  ( ph  ->  Q  e.  Q. )
Assertion
Ref Expression
caucvgprlemcanl  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Distinct variable groups:    Q, l, u    R, l, u    S, l, u
Allowed substitution hints:    ph( u, l)    L( u, l)

Proof of Theorem caucvgprlemcanl
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7703 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
21adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
3 caucvgprlemcanl.r . . . 4  |-  ( ph  ->  R  e.  Q. )
4 nqprlu 7631 . . . 4  |-  ( R  e.  Q.  ->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  e.  P. )
53, 4syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  e.  P. )
6 caucvgprlemcanl.l . . . 4  |-  ( ph  ->  L  e.  P. )
7 caucvgprlemcanl.s . . . . 5  |-  ( ph  ->  S  e.  Q. )
8 nqprlu 7631 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
97, 8syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
10 addclpr 7621 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
116, 9, 10syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
12 caucvgprlemcanl.q . . . 4  |-  ( ph  ->  Q  e.  Q. )
13 nqprlu 7631 . . . 4  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
1412, 13syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
15 addcomprg 7662 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1615adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
172, 5, 11, 14, 16caovord2d 6097 . 2  |-  ( ph  ->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
18 nqprl 7635 . . 3  |-  ( ( R  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
193, 11, 18syl2anc 411 . 2  |-  ( ph  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
20 addnqpr 7645 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
213, 12, 20syl2anc 411 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
22 addnqpr 7645 . . . . . 6  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
237, 12, 22syl2anc 411 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
2423oveq2d 5941 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
2521, 24breq12d 4047 . . 3  |-  ( ph  ->  ( <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
26 addclnq 7459 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  ->  ( R  +Q  Q
)  e.  Q. )
273, 12, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( R  +Q  Q
)  e.  Q. )
28 addclnq 7459 . . . . . . 7  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  ->  ( S  +Q  Q
)  e.  Q. )
297, 12, 28syl2anc 411 . . . . . 6  |-  ( ph  ->  ( S  +Q  Q
)  e.  Q. )
30 nqprlu 7631 . . . . . 6  |-  ( ( S  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >.  e. 
P. )
3129, 30syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )
32 addclpr 7621 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
336, 31, 32syl2anc 411 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
34 nqprl 7635 . . . 4  |-  ( ( ( R  +Q  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >. )  e.  P. )  -> 
( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
3527, 33, 34syl2anc 411 . . 3  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
36 addassprg 7663 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
376, 9, 14, 36syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
3837breq2d 4046 . . 3  |-  ( ph  ->  ( ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3925, 35, 383bitr4d 220 . 2  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
4017, 19, 393bitr4rd 221 1  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369   P.cnp 7375    +P. cpp 7377    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  cauappcvgprlemladdrl  7741  caucvgprlemladdrl  7762
  Copyright terms: Public domain W3C validator