ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl Unicode version

Theorem caucvgprlemcanl 7645
Description: Lemma for cauappcvgprlemladdrl 7658. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l  |-  ( ph  ->  L  e.  P. )
caucvgprlemcanl.s  |-  ( ph  ->  S  e.  Q. )
caucvgprlemcanl.r  |-  ( ph  ->  R  e.  Q. )
caucvgprlemcanl.q  |-  ( ph  ->  Q  e.  Q. )
Assertion
Ref Expression
caucvgprlemcanl  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Distinct variable groups:    Q, l, u    R, l, u    S, l, u
Allowed substitution hints:    ph( u, l)    L( u, l)

Proof of Theorem caucvgprlemcanl
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7620 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
21adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
3 caucvgprlemcanl.r . . . 4  |-  ( ph  ->  R  e.  Q. )
4 nqprlu 7548 . . . 4  |-  ( R  e.  Q.  ->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  e.  P. )
53, 4syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  e.  P. )
6 caucvgprlemcanl.l . . . 4  |-  ( ph  ->  L  e.  P. )
7 caucvgprlemcanl.s . . . . 5  |-  ( ph  ->  S  e.  Q. )
8 nqprlu 7548 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
97, 8syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
10 addclpr 7538 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
116, 9, 10syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
12 caucvgprlemcanl.q . . . 4  |-  ( ph  ->  Q  e.  Q. )
13 nqprlu 7548 . . . 4  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
1412, 13syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
15 addcomprg 7579 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1615adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
172, 5, 11, 14, 16caovord2d 6046 . 2  |-  ( ph  ->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
18 nqprl 7552 . . 3  |-  ( ( R  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
193, 11, 18syl2anc 411 . 2  |-  ( ph  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
20 addnqpr 7562 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
213, 12, 20syl2anc 411 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
22 addnqpr 7562 . . . . . 6  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
237, 12, 22syl2anc 411 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
2423oveq2d 5893 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
2521, 24breq12d 4018 . . 3  |-  ( ph  ->  ( <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
26 addclnq 7376 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  ->  ( R  +Q  Q
)  e.  Q. )
273, 12, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( R  +Q  Q
)  e.  Q. )
28 addclnq 7376 . . . . . . 7  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  ->  ( S  +Q  Q
)  e.  Q. )
297, 12, 28syl2anc 411 . . . . . 6  |-  ( ph  ->  ( S  +Q  Q
)  e.  Q. )
30 nqprlu 7548 . . . . . 6  |-  ( ( S  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >.  e. 
P. )
3129, 30syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )
32 addclpr 7538 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
336, 31, 32syl2anc 411 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
34 nqprl 7552 . . . 4  |-  ( ( ( R  +Q  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >. )  e.  P. )  -> 
( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
3527, 33, 34syl2anc 411 . . 3  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
36 addassprg 7580 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
376, 9, 14, 36syl3anc 1238 . . . 4  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
3837breq2d 4017 . . 3  |-  ( ph  ->  ( ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3925, 35, 383bitr4d 220 . 2  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
4017, 19, 393bitr4rd 221 1  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   <.cop 3597   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   1stc1st 6141   Q.cnq 7281    +Q cplq 7283    <Q cltq 7286   P.cnp 7292    +P. cpp 7294    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  cauappcvgprlemladdrl  7658  caucvgprlemladdrl  7679
  Copyright terms: Public domain W3C validator