ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl Unicode version

Theorem caucvgprlemcanl 7445
Description: Lemma for cauappcvgprlemladdrl 7458. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l  |-  ( ph  ->  L  e.  P. )
caucvgprlemcanl.s  |-  ( ph  ->  S  e.  Q. )
caucvgprlemcanl.r  |-  ( ph  ->  R  e.  Q. )
caucvgprlemcanl.q  |-  ( ph  ->  Q  e.  Q. )
Assertion
Ref Expression
caucvgprlemcanl  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Distinct variable groups:    Q, l, u    R, l, u    S, l, u
Allowed substitution hints:    ph( u, l)    L( u, l)

Proof of Theorem caucvgprlemcanl
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7420 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
21adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
3 caucvgprlemcanl.r . . . 4  |-  ( ph  ->  R  e.  Q. )
4 nqprlu 7348 . . . 4  |-  ( R  e.  Q.  ->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  e.  P. )
53, 4syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  e.  P. )
6 caucvgprlemcanl.l . . . 4  |-  ( ph  ->  L  e.  P. )
7 caucvgprlemcanl.s . . . . 5  |-  ( ph  ->  S  e.  Q. )
8 nqprlu 7348 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
97, 8syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
10 addclpr 7338 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
116, 9, 10syl2anc 408 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
12 caucvgprlemcanl.q . . . 4  |-  ( ph  ->  Q  e.  Q. )
13 nqprlu 7348 . . . 4  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
1412, 13syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
15 addcomprg 7379 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1615adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
172, 5, 11, 14, 16caovord2d 5933 . 2  |-  ( ph  ->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
18 nqprl 7352 . . 3  |-  ( ( R  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
193, 11, 18syl2anc 408 . 2  |-  ( ph  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
20 addnqpr 7362 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
213, 12, 20syl2anc 408 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
22 addnqpr 7362 . . . . . 6  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
237, 12, 22syl2anc 408 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
2423oveq2d 5783 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
2521, 24breq12d 3937 . . 3  |-  ( ph  ->  ( <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
26 addclnq 7176 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  ->  ( R  +Q  Q
)  e.  Q. )
273, 12, 26syl2anc 408 . . . 4  |-  ( ph  ->  ( R  +Q  Q
)  e.  Q. )
28 addclnq 7176 . . . . . . 7  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  ->  ( S  +Q  Q
)  e.  Q. )
297, 12, 28syl2anc 408 . . . . . 6  |-  ( ph  ->  ( S  +Q  Q
)  e.  Q. )
30 nqprlu 7348 . . . . . 6  |-  ( ( S  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >.  e. 
P. )
3129, 30syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )
32 addclpr 7338 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
336, 31, 32syl2anc 408 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
34 nqprl 7352 . . . 4  |-  ( ( ( R  +Q  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >. )  e.  P. )  -> 
( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
3527, 33, 34syl2anc 408 . . 3  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
36 addassprg 7380 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
376, 9, 14, 36syl3anc 1216 . . . 4  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
3837breq2d 3936 . . 3  |-  ( ph  ->  ( ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3925, 35, 383bitr4d 219 . 2  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
4017, 19, 393bitr4rd 220 1  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2123   <.cop 3525   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   1stc1st 6029   Q.cnq 7081    +Q cplq 7083    <Q cltq 7086   P.cnp 7092    +P. cpp 7094    <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  cauappcvgprlemladdrl  7458  caucvgprlemladdrl  7479
  Copyright terms: Public domain W3C validator