ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl Unicode version

Theorem caucvgprlemcanl 7606
Description: Lemma for cauappcvgprlemladdrl 7619. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l  |-  ( ph  ->  L  e.  P. )
caucvgprlemcanl.s  |-  ( ph  ->  S  e.  Q. )
caucvgprlemcanl.r  |-  ( ph  ->  R  e.  Q. )
caucvgprlemcanl.q  |-  ( ph  ->  Q  e.  Q. )
Assertion
Ref Expression
caucvgprlemcanl  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Distinct variable groups:    Q, l, u    R, l, u    S, l, u
Allowed substitution hints:    ph( u, l)    L( u, l)

Proof of Theorem caucvgprlemcanl
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7581 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
21adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
3 caucvgprlemcanl.r . . . 4  |-  ( ph  ->  R  e.  Q. )
4 nqprlu 7509 . . . 4  |-  ( R  e.  Q.  ->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  e.  P. )
53, 4syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  e.  P. )
6 caucvgprlemcanl.l . . . 4  |-  ( ph  ->  L  e.  P. )
7 caucvgprlemcanl.s . . . . 5  |-  ( ph  ->  S  e.  Q. )
8 nqprlu 7509 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
97, 8syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
10 addclpr 7499 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
116, 9, 10syl2anc 409 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
12 caucvgprlemcanl.q . . . 4  |-  ( ph  ->  Q  e.  Q. )
13 nqprlu 7509 . . . 4  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
1412, 13syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
15 addcomprg 7540 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1615adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
172, 5, 11, 14, 16caovord2d 6022 . 2  |-  ( ph  ->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
18 nqprl 7513 . . 3  |-  ( ( R  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
193, 11, 18syl2anc 409 . 2  |-  ( ph  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
20 addnqpr 7523 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
213, 12, 20syl2anc 409 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
22 addnqpr 7523 . . . . . 6  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
237, 12, 22syl2anc 409 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
2423oveq2d 5869 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
2521, 24breq12d 4002 . . 3  |-  ( ph  ->  ( <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
26 addclnq 7337 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  ->  ( R  +Q  Q
)  e.  Q. )
273, 12, 26syl2anc 409 . . . 4  |-  ( ph  ->  ( R  +Q  Q
)  e.  Q. )
28 addclnq 7337 . . . . . . 7  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  ->  ( S  +Q  Q
)  e.  Q. )
297, 12, 28syl2anc 409 . . . . . 6  |-  ( ph  ->  ( S  +Q  Q
)  e.  Q. )
30 nqprlu 7509 . . . . . 6  |-  ( ( S  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >.  e. 
P. )
3129, 30syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )
32 addclpr 7499 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
336, 31, 32syl2anc 409 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
34 nqprl 7513 . . . 4  |-  ( ( ( R  +Q  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >. )  e.  P. )  -> 
( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
3527, 33, 34syl2anc 409 . . 3  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
36 addassprg 7541 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
376, 9, 14, 36syl3anc 1233 . . . 4  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
3837breq2d 4001 . . 3  |-  ( ph  ->  ( ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3925, 35, 383bitr4d 219 . 2  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
4017, 19, 393bitr4rd 220 1  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    +P. cpp 7255    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  cauappcvgprlemladdrl  7619  caucvgprlemladdrl  7640
  Copyright terms: Public domain W3C validator