ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pn0sr Unicode version

Theorem pn0sr 7380
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
pn0sr  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )

Proof of Theorem pn0sr
StepHypRef Expression
1 m1r 7361 . . . 4  |-  -1R  e.  R.
2 1sr 7360 . . . 4  |-  1R  e.  R.
3 distrsrg 7368 . . . 4  |-  ( ( A  e.  R.  /\  -1R  e.  R.  /\  1R  e.  R. )  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) ) )
41, 2, 3mp3an23 1266 . . 3  |-  ( A  e.  R.  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) ) )
5 m1p1sr 7369 . . . . 5  |-  ( -1R 
+R  1R )  =  0R
65oveq2i 5679 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R )
76a1i 9 . . 3  |-  ( A  e.  R.  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R ) )
8 mulclsr 7363 . . . . 5  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
91, 8mpan2 417 . . . 4  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 mulclsr 7363 . . . . 5  |-  ( ( A  e.  R.  /\  1R  e.  R. )  -> 
( A  .R  1R )  e.  R. )
112, 10mpan2 417 . . . 4  |-  ( A  e.  R.  ->  ( A  .R  1R )  e. 
R. )
12 addcomsrg 7364 . . . 4  |-  ( ( ( A  .R  -1R )  e.  R.  /\  ( A  .R  1R )  e. 
R. )  ->  (
( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
139, 11, 12syl2anc 404 . . 3  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
144, 7, 133eqtr3d 2129 . 2  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
15 00sr 7378 . 2  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
16 1idsr 7377 . . 3  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
1716oveq1d 5683 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  ( A  +R  ( A  .R  -1R ) ) )
1814, 15, 173eqtr3rd 2130 1  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439  (class class class)co 5668   R.cnr 6919   0Rc0r 6920   1Rc1r 6921   -1Rcm1r 6922    +R cplr 6923    .R cmr 6924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-eprel 4127  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-1o 6197  df-2o 6198  df-oadd 6201  df-omul 6202  df-er 6308  df-ec 6310  df-qs 6314  df-ni 6926  df-pli 6927  df-mi 6928  df-lti 6929  df-plpq 6966  df-mpq 6967  df-enq 6969  df-nqqs 6970  df-plqqs 6971  df-mqqs 6972  df-1nqqs 6973  df-rq 6974  df-ltnqqs 6975  df-enq0 7046  df-nq0 7047  df-0nq0 7048  df-plq0 7049  df-mq0 7050  df-inp 7088  df-i1p 7089  df-iplp 7090  df-imp 7091  df-enr 7335  df-nr 7336  df-plr 7337  df-mr 7338  df-0r 7340  df-1r 7341  df-m1r 7342
This theorem is referenced by:  negexsr  7381  caucvgsrlemoffval  7404  axrnegex  7477
  Copyright terms: Public domain W3C validator