ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringnegr Unicode version

Theorem ringnegr 13814
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b  |-  B  =  ( Base `  R
)
ringnegl.t  |-  .x.  =  ( .r `  R )
ringnegl.u  |-  .1.  =  ( 1r `  R )
ringnegl.n  |-  N  =  ( invg `  R )
ringnegl.r  |-  ( ph  ->  R  e.  Ring )
ringnegl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
ringnegr  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  =  ( N `  X ) )

Proof of Theorem ringnegr
StepHypRef Expression
1 ringnegl.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
2 ringnegl.x . . . . 5  |-  ( ph  ->  X  e.  B )
3 ringgrp 13763 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
41, 3syl 14 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
5 ringnegl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
6 ringnegl.u . . . . . . . 8  |-  .1.  =  ( 1r `  R )
75, 6ringidcl 13782 . . . . . . 7  |-  ( R  e.  Ring  ->  .1.  e.  B )
81, 7syl 14 . . . . . 6  |-  ( ph  ->  .1.  e.  B )
9 ringnegl.n . . . . . . 7  |-  N  =  ( invg `  R )
105, 9grpinvcl 13380 . . . . . 6  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( N `  .1.  )  e.  B )
114, 8, 10syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  .1.  )  e.  B )
12 eqid 2205 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
13 ringnegl.t . . . . . 6  |-  .x.  =  ( .r `  R )
145, 12, 13ringdi 13780 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( N `  .1.  )  e.  B  /\  .1.  e.  B ) )  -> 
( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( ( X 
.x.  ( N `  .1.  ) ) ( +g  `  R ) ( X 
.x.  .1.  ) )
)
151, 2, 11, 8, 14syl13anc 1252 . . . 4  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( ( X 
.x.  ( N `  .1.  ) ) ( +g  `  R ) ( X 
.x.  .1.  ) )
)
16 eqid 2205 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
175, 12, 16, 9grplinv 13382 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( ( N `  .1.  ) ( +g  `  R
)  .1.  )  =  ( 0g `  R
) )
184, 8, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( N `  .1.  ) ( +g  `  R
)  .1.  )  =  ( 0g `  R
) )
1918oveq2d 5960 . . . . 5  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( X  .x.  ( 0g `  R ) ) )
205, 13, 16ringrz 13806 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R
) )
211, 2, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R ) )
2219, 21eqtrd 2238 . . . 4  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( 0g `  R ) )
235, 13, 6ringridm 13786 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  X )
241, 2, 23syl2anc 411 . . . . 5  |-  ( ph  ->  ( X  .x.  .1.  )  =  X )
2524oveq2d 5960 . . . 4  |-  ( ph  ->  ( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) ( X  .x.  .1.  ) )  =  ( ( X  .x.  ( N `  .1.  ) ) ( +g  `  R
) X ) )
2615, 22, 253eqtr3rd 2247 . . 3  |-  ( ph  ->  ( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) )
275, 13ringcl 13775 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  ( N `  .1.  )  e.  B )  ->  ( X  .x.  ( N `  .1.  ) )  e.  B
)
281, 2, 11, 27syl3anc 1250 . . . 4  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  e.  B )
295, 12, 16, 9grpinvid2 13385 . . . 4  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  ( X  .x.  ( N `
 .1.  ) )  e.  B )  -> 
( ( N `  X )  =  ( X  .x.  ( N `
 .1.  ) )  <-> 
( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) ) )
304, 2, 28, 29syl3anc 1250 . . 3  |-  ( ph  ->  ( ( N `  X )  =  ( X  .x.  ( N `
 .1.  ) )  <-> 
( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) ) )
3126, 30mpbird 167 . 2  |-  ( ph  ->  ( N `  X
)  =  ( X 
.x.  ( N `  .1.  ) ) )
3231eqcomd 2211 1  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333   1rcur 13721   Ringcrg 13758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mgp 13683  df-ur 13722  df-ring 13760
This theorem is referenced by:  ringmneg2  13816  lmodsubdi  14106
  Copyright terms: Public domain W3C validator