ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringnegr Unicode version

Theorem ringnegr 13229
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b  |-  B  =  ( Base `  R
)
ringnegl.t  |-  .x.  =  ( .r `  R )
ringnegl.u  |-  .1.  =  ( 1r `  R )
ringnegl.n  |-  N  =  ( invg `  R )
ringnegl.r  |-  ( ph  ->  R  e.  Ring )
ringnegl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
ringnegr  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  =  ( N `  X ) )

Proof of Theorem ringnegr
StepHypRef Expression
1 ringnegl.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
2 ringnegl.x . . . . 5  |-  ( ph  ->  X  e.  B )
3 ringgrp 13184 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
41, 3syl 14 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
5 ringnegl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
6 ringnegl.u . . . . . . . 8  |-  .1.  =  ( 1r `  R )
75, 6ringidcl 13203 . . . . . . 7  |-  ( R  e.  Ring  ->  .1.  e.  B )
81, 7syl 14 . . . . . 6  |-  ( ph  ->  .1.  e.  B )
9 ringnegl.n . . . . . . 7  |-  N  =  ( invg `  R )
105, 9grpinvcl 12921 . . . . . 6  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( N `  .1.  )  e.  B )
114, 8, 10syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  .1.  )  e.  B )
12 eqid 2177 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
13 ringnegl.t . . . . . 6  |-  .x.  =  ( .r `  R )
145, 12, 13ringdi 13201 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( N `  .1.  )  e.  B  /\  .1.  e.  B ) )  -> 
( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( ( X 
.x.  ( N `  .1.  ) ) ( +g  `  R ) ( X 
.x.  .1.  ) )
)
151, 2, 11, 8, 14syl13anc 1240 . . . 4  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( ( X 
.x.  ( N `  .1.  ) ) ( +g  `  R ) ( X 
.x.  .1.  ) )
)
16 eqid 2177 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
175, 12, 16, 9grplinv 12922 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( ( N `  .1.  ) ( +g  `  R
)  .1.  )  =  ( 0g `  R
) )
184, 8, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( N `  .1.  ) ( +g  `  R
)  .1.  )  =  ( 0g `  R
) )
1918oveq2d 5891 . . . . 5  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( X  .x.  ( 0g `  R ) ) )
205, 13, 16ringrz 13223 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R
) )
211, 2, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R ) )
2219, 21eqtrd 2210 . . . 4  |-  ( ph  ->  ( X  .x.  (
( N `  .1.  ) ( +g  `  R
)  .1.  ) )  =  ( 0g `  R ) )
235, 13, 6ringridm 13207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  X )
241, 2, 23syl2anc 411 . . . . 5  |-  ( ph  ->  ( X  .x.  .1.  )  =  X )
2524oveq2d 5891 . . . 4  |-  ( ph  ->  ( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) ( X  .x.  .1.  ) )  =  ( ( X  .x.  ( N `  .1.  ) ) ( +g  `  R
) X ) )
2615, 22, 253eqtr3rd 2219 . . 3  |-  ( ph  ->  ( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) )
275, 13ringcl 13196 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  ( N `  .1.  )  e.  B )  ->  ( X  .x.  ( N `  .1.  ) )  e.  B
)
281, 2, 11, 27syl3anc 1238 . . . 4  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  e.  B )
295, 12, 16, 9grpinvid2 12925 . . . 4  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  ( X  .x.  ( N `
 .1.  ) )  e.  B )  -> 
( ( N `  X )  =  ( X  .x.  ( N `
 .1.  ) )  <-> 
( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) ) )
304, 2, 28, 29syl3anc 1238 . . 3  |-  ( ph  ->  ( ( N `  X )  =  ( X  .x.  ( N `
 .1.  ) )  <-> 
( ( X  .x.  ( N `  .1.  )
) ( +g  `  R
) X )  =  ( 0g `  R
) ) )
3126, 30mpbird 167 . 2  |-  ( ph  ->  ( N `  X
)  =  ( X 
.x.  ( N `  .1.  ) ) )
3231eqcomd 2183 1  |-  ( ph  ->  ( X  .x.  ( N `  .1.  ) )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   .rcmulr 12537   0gc0g 12705   Grpcgrp 12877   invgcminusg 12878   1rcur 13142   Ringcrg 13179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mgp 13131  df-ur 13143  df-ring 13181
This theorem is referenced by:  ringmneg2  13231  lmodsubdi  13434
  Copyright terms: Public domain W3C validator