| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtr3d 2264 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 5 | 1, 4 | eqtr3d 2264 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: fcofo 5901 fcof1o 5906 frecabcl 6535 nnaword 6647 nninfisol 7288 enomnilem 7293 fodju0 7302 enmkvlem 7316 enwomnilem 7324 pn0sr 7946 negeu 8325 add20 8609 2halves 9328 bcnn 10966 bcpasc 10975 wrdeqs1cat 11238 resqrexlemover 11507 fsumneg 11948 geolim 12008 geolim2 12009 mertensabs 12034 sincossq 12245 demoivre 12270 eirraplem 12274 gcdid 12493 gcdmultipled 12500 phiprmpw 12730 pythagtriplem12 12784 expnprm 12862 imasbas 13326 imasplusg 13327 imasmulr 13328 grpinvid1 13571 grpnpcan 13611 grplactcnv 13621 ghmgrp 13641 conjghm 13799 ringnegl 14000 ringnegr 14001 ringmneg2 14003 ring1 14008 rdivmuldivd 14093 lmodfopne 14275 lmodvsneg 14280 ioo2bl 15210 ptolemy 15483 coskpi 15507 logbgcd1irr 15626 logbgcd1irraplemap 15628 lgseisenlem3 15736 lgseisenlem4 15737 lgsquadlem1 15741 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |