| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtr3d 2231 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 5 | 1, 4 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fcofo 5832 fcof1o 5837 frecabcl 6458 nnaword 6570 nninfisol 7200 enomnilem 7205 fodju0 7214 enmkvlem 7228 enwomnilem 7236 pn0sr 7840 negeu 8219 add20 8503 2halves 9222 bcnn 10851 bcpasc 10860 resqrexlemover 11177 fsumneg 11618 geolim 11678 geolim2 11679 mertensabs 11704 sincossq 11915 demoivre 11940 eirraplem 11944 gcdid 12163 gcdmultipled 12170 phiprmpw 12400 pythagtriplem12 12454 expnprm 12532 imasbas 12960 imasplusg 12961 imasmulr 12962 grpinvid1 13194 grpnpcan 13234 grplactcnv 13244 ghmgrp 13258 conjghm 13416 ringnegl 13617 ringnegr 13618 ringmneg2 13620 ring1 13625 rdivmuldivd 13710 lmodfopne 13892 lmodvsneg 13897 ioo2bl 14797 ptolemy 15070 coskpi 15094 logbgcd1irr 15213 logbgcd1irraplemap 15215 lgseisenlem3 15323 lgseisenlem4 15324 lgsquadlem1 15328 lgsquadlem2 15329 |
| Copyright terms: Public domain | W3C validator |