Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtr3d 2205 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
5 | 1, 4 | eqtr3d 2205 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: fcofo 5763 fcof1o 5768 frecabcl 6378 nnaword 6490 nninfisol 7109 enomnilem 7114 fodju0 7123 enmkvlem 7137 enwomnilem 7145 pn0sr 7733 negeu 8110 add20 8393 2halves 9107 bcnn 10691 bcpasc 10700 resqrexlemover 10974 fsumneg 11414 geolim 11474 geolim2 11475 mertensabs 11500 sincossq 11711 demoivre 11735 eirraplem 11739 gcdid 11941 gcdmultipled 11948 phiprmpw 12176 pythagtriplem12 12229 expnprm 12305 grpinvid1 12754 ioo2bl 13337 ptolemy 13539 coskpi 13563 logbgcd1irr 13679 logbgcd1irraplemap 13681 |
Copyright terms: Public domain | W3C validator |