![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtr3d 2228 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
5 | 1, 4 | eqtr3d 2228 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: fcofo 5828 fcof1o 5833 frecabcl 6454 nnaword 6566 nninfisol 7194 enomnilem 7199 fodju0 7208 enmkvlem 7222 enwomnilem 7230 pn0sr 7833 negeu 8212 add20 8495 2halves 9214 bcnn 10831 bcpasc 10840 resqrexlemover 11157 fsumneg 11597 geolim 11657 geolim2 11658 mertensabs 11683 sincossq 11894 demoivre 11919 eirraplem 11923 gcdid 12126 gcdmultipled 12133 phiprmpw 12363 pythagtriplem12 12416 expnprm 12494 imasbas 12893 imasplusg 12894 imasmulr 12895 grpinvid1 13127 grpnpcan 13167 grplactcnv 13177 ghmgrp 13191 conjghm 13349 ringnegl 13550 ringnegr 13551 ringmneg2 13553 ring1 13558 rdivmuldivd 13643 lmodfopne 13825 lmodvsneg 13830 ioo2bl 14730 ptolemy 15000 coskpi 15024 logbgcd1irr 15140 logbgcd1irraplemap 15142 lgseisenlem3 15229 lgseisenlem4 15230 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |