| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtr3d 2231 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 5 | 1, 4 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fcofo 5831 fcof1o 5836 frecabcl 6457 nnaword 6569 nninfisol 7199 enomnilem 7204 fodju0 7213 enmkvlem 7227 enwomnilem 7235 pn0sr 7838 negeu 8217 add20 8501 2halves 9220 bcnn 10849 bcpasc 10858 resqrexlemover 11175 fsumneg 11616 geolim 11676 geolim2 11677 mertensabs 11702 sincossq 11913 demoivre 11938 eirraplem 11942 gcdid 12153 gcdmultipled 12160 phiprmpw 12390 pythagtriplem12 12444 expnprm 12522 imasbas 12950 imasplusg 12951 imasmulr 12952 grpinvid1 13184 grpnpcan 13224 grplactcnv 13234 ghmgrp 13248 conjghm 13406 ringnegl 13607 ringnegr 13608 ringmneg2 13610 ring1 13615 rdivmuldivd 13700 lmodfopne 13882 lmodvsneg 13887 ioo2bl 14787 ptolemy 15060 coskpi 15084 logbgcd1irr 15203 logbgcd1irraplemap 15205 lgseisenlem3 15313 lgseisenlem4 15314 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |