| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtr3d 2264 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 5 | 1, 4 | eqtr3d 2264 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: fcofo 5914 fcof1o 5919 frecabcl 6551 nnaword 6665 nninfisol 7308 enomnilem 7313 fodju0 7322 enmkvlem 7336 enwomnilem 7344 pn0sr 7966 negeu 8345 add20 8629 2halves 9348 bcnn 10987 bcpasc 10996 wrdeqs1cat 11260 resqrexlemover 11529 fsumneg 11970 geolim 12030 geolim2 12031 mertensabs 12056 sincossq 12267 demoivre 12292 eirraplem 12296 gcdid 12515 gcdmultipled 12522 phiprmpw 12752 pythagtriplem12 12806 expnprm 12884 imasbas 13348 imasplusg 13349 imasmulr 13350 grpinvid1 13593 grpnpcan 13633 grplactcnv 13643 ghmgrp 13663 conjghm 13821 ringnegl 14022 ringnegr 14023 ringmneg2 14025 ring1 14030 rdivmuldivd 14116 lmodfopne 14298 lmodvsneg 14303 ioo2bl 15233 ptolemy 15506 coskpi 15530 logbgcd1irr 15649 logbgcd1irraplemap 15651 lgseisenlem3 15759 lgseisenlem4 15760 lgsquadlem1 15764 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |