| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 2 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtr3d 2241 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 5 | 1, 4 | eqtr3d 2241 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: fcofo 5863 fcof1o 5868 frecabcl 6495 nnaword 6607 nninfisol 7247 enomnilem 7252 fodju0 7261 enmkvlem 7275 enwomnilem 7283 pn0sr 7897 negeu 8276 add20 8560 2halves 9279 bcnn 10915 bcpasc 10924 resqrexlemover 11371 fsumneg 11812 geolim 11872 geolim2 11873 mertensabs 11898 sincossq 12109 demoivre 12134 eirraplem 12138 gcdid 12357 gcdmultipled 12364 phiprmpw 12594 pythagtriplem12 12648 expnprm 12726 imasbas 13189 imasplusg 13190 imasmulr 13191 grpinvid1 13434 grpnpcan 13474 grplactcnv 13484 ghmgrp 13504 conjghm 13662 ringnegl 13863 ringnegr 13864 ringmneg2 13866 ring1 13871 rdivmuldivd 13956 lmodfopne 14138 lmodvsneg 14143 ioo2bl 15073 ptolemy 15346 coskpi 15370 logbgcd1irr 15489 logbgcd1irraplemap 15491 lgseisenlem3 15599 lgseisenlem4 15600 lgsquadlem1 15604 lgsquadlem2 15605 |
| Copyright terms: Public domain | W3C validator |