ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap Unicode version

Theorem logbgcd1irraplemap 13956
Description: Lemma for logbgcd1irrap 13957. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemap  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
2 logbgcd1irraplem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
3 logbgcd1irraplem.rp . . . . 5  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
4 logbgcd1irraplem.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
5 logbgcd1irraplem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
61, 2, 3, 4, 5logbgcd1irraplemexp 13955 . . . 4  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
7 eluz2nn 9537 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
82, 7syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
98nnrpd 9663 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
10 1red 7947 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
118nnred 8903 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
12 eluz2gt1 9573 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
132, 12syl 14 . . . . . . 7  |-  ( ph  ->  1  <  B )
1410, 11, 13gtapd 8568 . . . . . 6  |-  ( ph  ->  B #  1 )
15 eluz2nn 9537 . . . . . . . 8  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
161, 15syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  NN )
1716nnrpd 9663 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
18 rpcxplogb 13951 . . . . . 6  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
199, 14, 17, 18syl3anc 1238 . . . . 5  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  =  X )
2019oveq1d 5880 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N )  =  ( X ^ N ) )
21 znq 9595 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
224, 5, 21syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  /  N
)  e.  QQ )
23 qre 9596 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
2422, 23syl 14 . . . . . 6  |-  ( ph  ->  ( M  /  N
)  e.  RR )
255nncnd 8904 . . . . . 6  |-  ( ph  ->  N  e.  CC )
269, 24, 25cxpmuld 13925 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( ( B  ^c 
( M  /  N
) )  ^c  N ) )
274zcnd 9347 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
285nnap0d 8936 . . . . . . . 8  |-  ( ph  ->  N #  0 )
2927, 25, 28divcanap1d 8720 . . . . . . 7  |-  ( ph  ->  ( ( M  /  N )  x.  N
)  =  M )
3029oveq2d 5881 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B  ^c  M ) )
31 cxpexpnn 13886 . . . . . . 7  |-  ( ( B  e.  NN  /\  M  e.  ZZ )  ->  ( B  ^c  M )  =  ( B ^ M ) )
328, 4, 31syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  ^c  M )  =  ( B ^ M ) )
3330, 32eqtrd 2208 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B ^ M ) )
349, 24rpcxpcld 13921 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  RR+ )
355nnzd 9345 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
36 cxpexprp 13885 . . . . . 6  |-  ( ( ( B  ^c 
( M  /  N
) )  e.  RR+  /\  N  e.  ZZ )  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
3734, 35, 36syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c 
( M  /  N
) ) ^ N
) )
3826, 33, 373eqtr3rd 2217 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) ) ^ N )  =  ( B ^ M ) )
396, 20, 383brtr4d 4030 . . 3  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
40 relogbzcl 13939 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+ )  ->  ( B logb 
X )  e.  RR )
412, 17, 40syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B logb  X )  e.  RR )
4241recnd 7960 . . . . 5  |-  ( ph  ->  ( B logb  X )  e.  CC )
439, 42rpcncxpcld 13916 . . . 4  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  e.  CC )
44 qcn 9605 . . . . . 6  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  CC )
4522, 44syl 14 . . . . 5  |-  ( ph  ->  ( M  /  N
)  e.  CC )
469, 45rpcncxpcld 13916 . . . 4  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  CC )
47 apexp1 10664 . . . 4  |-  ( ( ( B  ^c 
( B logb  X ) )  e.  CC  /\  ( B  ^c  ( M  /  N ) )  e.  CC  /\  N  e.  NN )  ->  (
( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  ->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
4843, 46, 5, 47syl3anc 1238 . . 3  |-  ( ph  ->  ( ( ( B  ^c  ( B logb  X ) ) ^ N
) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  -> 
( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) ) )
4939, 48mpd 13 . 2  |-  ( ph  ->  ( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) )
50 apcxp2 13927 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( ( B logb  X )  e.  RR  /\  ( M  /  N )  e.  RR ) )  -> 
( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
519, 14, 41, 24, 50syl22anc 1239 . 2  |-  ( ph  ->  ( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
5249, 51mpbird 167 1  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   CCcc 7784   RRcr 7785   1c1 7787    x. cmul 7791    < clt 7966   # cap 8512    / cdiv 8601   NNcn 8890   2c2 8941   ZZcz 9224   ZZ>=cuz 9499   QQcq 9590   RR+crp 9622   ^cexp 10487    gcd cgcd 11908    ^c ccxp 13847   logb clogb 13930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906  ax-pre-suploc 7907  ax-addf 7908  ax-mulf 7909
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-disj 3976  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-2o 6408  df-oadd 6411  df-er 6525  df-map 6640  df-pm 6641  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-ioo 9861  df-ico 9863  df-icc 9864  df-fz 9978  df-fzo 10111  df-fl 10238  df-mod 10291  df-seqfrec 10414  df-exp 10488  df-fac 10672  df-bc 10694  df-ihash 10722  df-shft 10790  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-sumdc 11328  df-ef 11622  df-e 11623  df-dvds 11761  df-gcd 11909  df-prm 12073  df-rest 12610  df-topgen 12629  df-psmet 13056  df-xmet 13057  df-met 13058  df-bl 13059  df-mopn 13060  df-top 13065  df-topon 13078  df-bases 13110  df-ntr 13165  df-cn 13257  df-cnp 13258  df-tx 13322  df-cncf 13627  df-limced 13694  df-dvap 13695  df-relog 13848  df-rpcxp 13849  df-logb 13931
This theorem is referenced by:  logbgcd1irrap  13957
  Copyright terms: Public domain W3C validator