ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap Unicode version

Theorem logbgcd1irraplemap 15101
Description: Lemma for logbgcd1irrap 15102. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemap  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
2 logbgcd1irraplem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
3 logbgcd1irraplem.rp . . . . 5  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
4 logbgcd1irraplem.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
5 logbgcd1irraplem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
61, 2, 3, 4, 5logbgcd1irraplemexp 15100 . . . 4  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
7 eluz2nn 9631 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
82, 7syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
98nnrpd 9760 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
10 1red 8034 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
118nnred 8995 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
12 eluz2gt1 9667 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
132, 12syl 14 . . . . . . 7  |-  ( ph  ->  1  <  B )
1410, 11, 13gtapd 8656 . . . . . 6  |-  ( ph  ->  B #  1 )
15 eluz2nn 9631 . . . . . . . 8  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
161, 15syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  NN )
1716nnrpd 9760 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
18 rpcxplogb 15096 . . . . . 6  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
199, 14, 17, 18syl3anc 1249 . . . . 5  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  =  X )
2019oveq1d 5933 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N )  =  ( X ^ N ) )
21 znq 9689 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
224, 5, 21syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  /  N
)  e.  QQ )
23 qre 9690 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
2422, 23syl 14 . . . . . 6  |-  ( ph  ->  ( M  /  N
)  e.  RR )
255nncnd 8996 . . . . . 6  |-  ( ph  ->  N  e.  CC )
269, 24, 25cxpmuld 15070 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( ( B  ^c 
( M  /  N
) )  ^c  N ) )
274zcnd 9440 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
285nnap0d 9028 . . . . . . . 8  |-  ( ph  ->  N #  0 )
2927, 25, 28divcanap1d 8810 . . . . . . 7  |-  ( ph  ->  ( ( M  /  N )  x.  N
)  =  M )
3029oveq2d 5934 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B  ^c  M ) )
31 cxpexpnn 15031 . . . . . . 7  |-  ( ( B  e.  NN  /\  M  e.  ZZ )  ->  ( B  ^c  M )  =  ( B ^ M ) )
328, 4, 31syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  ^c  M )  =  ( B ^ M ) )
3330, 32eqtrd 2226 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B ^ M ) )
349, 24rpcxpcld 15066 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  RR+ )
355nnzd 9438 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
36 cxpexprp 15030 . . . . . 6  |-  ( ( ( B  ^c 
( M  /  N
) )  e.  RR+  /\  N  e.  ZZ )  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
3734, 35, 36syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c 
( M  /  N
) ) ^ N
) )
3826, 33, 373eqtr3rd 2235 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) ) ^ N )  =  ( B ^ M ) )
396, 20, 383brtr4d 4061 . . 3  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
40 relogbzcl 15084 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+ )  ->  ( B logb 
X )  e.  RR )
412, 17, 40syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B logb  X )  e.  RR )
4241recnd 8048 . . . . 5  |-  ( ph  ->  ( B logb  X )  e.  CC )
439, 42rpcncxpcld 15061 . . . 4  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  e.  CC )
44 qcn 9699 . . . . . 6  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  CC )
4522, 44syl 14 . . . . 5  |-  ( ph  ->  ( M  /  N
)  e.  CC )
469, 45rpcncxpcld 15061 . . . 4  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  CC )
47 apexp1 10789 . . . 4  |-  ( ( ( B  ^c 
( B logb  X ) )  e.  CC  /\  ( B  ^c  ( M  /  N ) )  e.  CC  /\  N  e.  NN )  ->  (
( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  ->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
4843, 46, 5, 47syl3anc 1249 . . 3  |-  ( ph  ->  ( ( ( B  ^c  ( B logb  X ) ) ^ N
) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  -> 
( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) ) )
4939, 48mpd 13 . 2  |-  ( ph  ->  ( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) )
50 apcxp2 15072 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( ( B logb  X )  e.  RR  /\  ( M  /  N )  e.  RR ) )  -> 
( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
519, 14, 41, 24, 50syl22anc 1250 . 2  |-  ( ph  ->  ( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
5249, 51mpbird 167 1  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   1c1 7873    x. cmul 7877    < clt 8054   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   RR+crp 9719   ^cexp 10609    gcd cgcd 12079    ^c ccxp 14992   logb clogb 15075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792  df-dvds 11931  df-gcd 12080  df-prm 12246  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811  df-relog 14993  df-rpcxp 14994  df-logb 15076
This theorem is referenced by:  logbgcd1irrap  15102
  Copyright terms: Public domain W3C validator