Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > logbgcd1irraplemap | Unicode version |
Description: Lemma for logbgcd1irrap 13682. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
Ref | Expression |
---|---|
logbgcd1irraplem.x | |
logbgcd1irraplem.b | |
logbgcd1irraplem.rp | |
logbgcd1irraplem.m | |
logbgcd1irraplem.n |
Ref | Expression |
---|---|
logbgcd1irraplemap | logb # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logbgcd1irraplem.x | . . . . 5 | |
2 | logbgcd1irraplem.b | . . . . 5 | |
3 | logbgcd1irraplem.rp | . . . . 5 | |
4 | logbgcd1irraplem.m | . . . . 5 | |
5 | logbgcd1irraplem.n | . . . . 5 | |
6 | 1, 2, 3, 4, 5 | logbgcd1irraplemexp 13680 | . . . 4 # |
7 | eluz2nn 9525 | . . . . . . . 8 | |
8 | 2, 7 | syl 14 | . . . . . . 7 |
9 | 8 | nnrpd 9651 | . . . . . 6 |
10 | 1red 7935 | . . . . . . 7 | |
11 | 8 | nnred 8891 | . . . . . . 7 |
12 | eluz2gt1 9561 | . . . . . . . 8 | |
13 | 2, 12 | syl 14 | . . . . . . 7 |
14 | 10, 11, 13 | gtapd 8556 | . . . . . 6 # |
15 | eluz2nn 9525 | . . . . . . . 8 | |
16 | 1, 15 | syl 14 | . . . . . . 7 |
17 | 16 | nnrpd 9651 | . . . . . 6 |
18 | rpcxplogb 13676 | . . . . . 6 # logb | |
19 | 9, 14, 17, 18 | syl3anc 1233 | . . . . 5 logb |
20 | 19 | oveq1d 5868 | . . . 4 logb |
21 | znq 9583 | . . . . . . . 8 | |
22 | 4, 5, 21 | syl2anc 409 | . . . . . . 7 |
23 | qre 9584 | . . . . . . 7 | |
24 | 22, 23 | syl 14 | . . . . . 6 |
25 | 5 | nncnd 8892 | . . . . . 6 |
26 | 9, 24, 25 | cxpmuld 13650 | . . . . 5 |
27 | 4 | zcnd 9335 | . . . . . . . 8 |
28 | 5 | nnap0d 8924 | . . . . . . . 8 # |
29 | 27, 25, 28 | divcanap1d 8708 | . . . . . . 7 |
30 | 29 | oveq2d 5869 | . . . . . 6 |
31 | cxpexpnn 13611 | . . . . . . 7 | |
32 | 8, 4, 31 | syl2anc 409 | . . . . . 6 |
33 | 30, 32 | eqtrd 2203 | . . . . 5 |
34 | 9, 24 | rpcxpcld 13646 | . . . . . 6 |
35 | 5 | nnzd 9333 | . . . . . 6 |
36 | cxpexprp 13610 | . . . . . 6 | |
37 | 34, 35, 36 | syl2anc 409 | . . . . 5 |
38 | 26, 33, 37 | 3eqtr3rd 2212 | . . . 4 |
39 | 6, 20, 38 | 3brtr4d 4021 | . . 3 logb # |
40 | relogbzcl 13664 | . . . . . . 7 logb | |
41 | 2, 17, 40 | syl2anc 409 | . . . . . 6 logb |
42 | 41 | recnd 7948 | . . . . 5 logb |
43 | 9, 42 | rpcncxpcld 13641 | . . . 4 logb |
44 | qcn 9593 | . . . . . 6 | |
45 | 22, 44 | syl 14 | . . . . 5 |
46 | 9, 45 | rpcncxpcld 13641 | . . . 4 |
47 | apexp1 10652 | . . . 4 logb logb # logb # | |
48 | 43, 46, 5, 47 | syl3anc 1233 | . . 3 logb # logb # |
49 | 39, 48 | mpd 13 | . 2 logb # |
50 | apcxp2 13652 | . . 3 # logb logb # logb # | |
51 | 9, 14, 41, 24, 50 | syl22anc 1234 | . 2 logb # logb # |
52 | 49, 51 | mpbird 166 | 1 logb # |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 cr 7773 c1 7775 cmul 7779 clt 7954 # cap 8500 cdiv 8589 cn 8878 c2 8929 cz 9212 cuz 9487 cq 9578 crp 9610 cexp 10475 cgcd 11897 ccxp 13572 logb clogb 13655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-pre-suploc 7895 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-2o 6396 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-ico 9851 df-icc 9852 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-e 11612 df-dvds 11750 df-gcd 11898 df-prm 12062 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 df-relog 13573 df-rpcxp 13574 df-logb 13656 |
This theorem is referenced by: logbgcd1irrap 13682 |
Copyright terms: Public domain | W3C validator |