ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemap Unicode version

Theorem logbgcd1irraplemap 15516
Description: Lemma for logbgcd1irrap 15517. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemap  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )

Proof of Theorem logbgcd1irraplemap
StepHypRef Expression
1 logbgcd1irraplem.x . . . . 5  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
2 logbgcd1irraplem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
3 logbgcd1irraplem.rp . . . . 5  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
4 logbgcd1irraplem.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
5 logbgcd1irraplem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
61, 2, 3, 4, 5logbgcd1irraplemexp 15515 . . . 4  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
7 eluz2nn 9707 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
82, 7syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
98nnrpd 9836 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
10 1red 8107 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
118nnred 9069 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
12 eluz2gt1 9743 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
132, 12syl 14 . . . . . . 7  |-  ( ph  ->  1  <  B )
1410, 11, 13gtapd 8730 . . . . . 6  |-  ( ph  ->  B #  1 )
15 eluz2nn 9707 . . . . . . . 8  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
161, 15syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  NN )
1716nnrpd 9836 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
18 rpcxplogb 15511 . . . . . 6  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
199, 14, 17, 18syl3anc 1250 . . . . 5  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  =  X )
2019oveq1d 5972 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N )  =  ( X ^ N ) )
21 znq 9765 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
224, 5, 21syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( M  /  N
)  e.  QQ )
23 qre 9766 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
2422, 23syl 14 . . . . . 6  |-  ( ph  ->  ( M  /  N
)  e.  RR )
255nncnd 9070 . . . . . 6  |-  ( ph  ->  N  e.  CC )
269, 24, 25cxpmuld 15484 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( ( B  ^c 
( M  /  N
) )  ^c  N ) )
274zcnd 9516 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
285nnap0d 9102 . . . . . . . 8  |-  ( ph  ->  N #  0 )
2927, 25, 28divcanap1d 8884 . . . . . . 7  |-  ( ph  ->  ( ( M  /  N )  x.  N
)  =  M )
3029oveq2d 5973 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B  ^c  M ) )
31 cxpexpnn 15443 . . . . . . 7  |-  ( ( B  e.  NN  /\  M  e.  ZZ )  ->  ( B  ^c  M )  =  ( B ^ M ) )
328, 4, 31syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  ^c  M )  =  ( B ^ M ) )
3330, 32eqtrd 2239 . . . . 5  |-  ( ph  ->  ( B  ^c 
( ( M  /  N )  x.  N
) )  =  ( B ^ M ) )
349, 24rpcxpcld 15480 . . . . . 6  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  RR+ )
355nnzd 9514 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
36 cxpexprp 15442 . . . . . 6  |-  ( ( ( B  ^c 
( M  /  N
) )  e.  RR+  /\  N  e.  ZZ )  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
3734, 35, 36syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) )  ^c  N )  =  ( ( B  ^c 
( M  /  N
) ) ^ N
) )
3826, 33, 373eqtr3rd 2248 . . . 4  |-  ( ph  ->  ( ( B  ^c  ( M  /  N ) ) ^ N )  =  ( B ^ M ) )
396, 20, 383brtr4d 4083 . . 3  |-  ( ph  ->  ( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N ) )
40 relogbzcl 15499 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+ )  ->  ( B logb 
X )  e.  RR )
412, 17, 40syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B logb  X )  e.  RR )
4241recnd 8121 . . . . 5  |-  ( ph  ->  ( B logb  X )  e.  CC )
439, 42rpcncxpcld 15474 . . . 4  |-  ( ph  ->  ( B  ^c 
( B logb  X ) )  e.  CC )
44 qcn 9775 . . . . . 6  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  CC )
4522, 44syl 14 . . . . 5  |-  ( ph  ->  ( M  /  N
)  e.  CC )
469, 45rpcncxpcld 15474 . . . 4  |-  ( ph  ->  ( B  ^c 
( M  /  N
) )  e.  CC )
47 apexp1 10885 . . . 4  |-  ( ( ( B  ^c 
( B logb  X ) )  e.  CC  /\  ( B  ^c  ( M  /  N ) )  e.  CC  /\  N  e.  NN )  ->  (
( ( B  ^c  ( B logb  X ) ) ^ N ) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  ->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
4843, 46, 5, 47syl3anc 1250 . . 3  |-  ( ph  ->  ( ( ( B  ^c  ( B logb  X ) ) ^ N
) #  ( ( B  ^c  ( M  /  N ) ) ^ N )  -> 
( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) ) )
4939, 48mpd 13 . 2  |-  ( ph  ->  ( B  ^c 
( B logb  X ) ) #  ( B  ^c 
( M  /  N
) ) )
50 apcxp2 15486 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( ( B logb  X )  e.  RR  /\  ( M  /  N )  e.  RR ) )  -> 
( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
519, 14, 41, 24, 50syl22anc 1251 . 2  |-  ( ph  ->  ( ( B logb  X ) #  ( M  /  N
)  <->  ( B  ^c  ( B logb  X ) ) #  ( B  ^c  ( M  /  N ) ) ) )
5249, 51mpbird 167 1  |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   CCcc 7943   RRcr 7944   1c1 7946    x. cmul 7950    < clt 8127   # cap 8674    / cdiv 8765   NNcn 9056   2c2 9107   ZZcz 9392   ZZ>=cuz 9668   QQcq 9760   RR+crp 9795   ^cexp 10705    gcd cgcd 12349    ^c ccxp 15404   logb clogb 15490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-pre-suploc 8066  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-2o 6516  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ioo 10034  df-ico 10036  df-icc 10037  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-e 12035  df-dvds 12174  df-gcd 12350  df-prm 12505  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204  df-relog 15405  df-rpcxp 15406  df-logb 15491
This theorem is referenced by:  logbgcd1irrap  15517
  Copyright terms: Public domain W3C validator