ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdiv0nq Unicode version

Theorem appdiv0nq 7659
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7658 in which  A is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
appdiv0nq  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
Distinct variable groups:    B, m    C, m

Proof of Theorem appdiv0nq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7507 . . 3  |-  ( B  e.  Q.  ->  E. x  e.  Q.  x  <Q  B )
21adantr 276 . 2  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  Q.  x  <Q  B )
3 appdivnq 7658 . . . . 5  |-  ( ( x  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( x  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
4 simpr 110 . . . . . 6  |-  ( ( x  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B )  ->  (
m  .Q  C ) 
<Q  B )
54reximi 2602 . . . . 5  |-  ( E. m  e.  Q.  (
x  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B )  ->  E. m  e.  Q.  ( m  .Q  C )  <Q  B )
63, 5syl 14 . . . 4  |-  ( ( x  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
76ancoms 268 . . 3  |-  ( ( C  e.  Q.  /\  x  <Q  B )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
87ad2ant2l 508 . 2  |-  ( ( ( B  e.  Q.  /\  C  e.  Q. )  /\  ( x  e.  Q.  /\  x  <Q  B )
)  ->  E. m  e.  Q.  ( m  .Q  C )  <Q  B )
92, 8rexlimddv 2627 1  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   E.wrex 2484   class class class wbr 4043  (class class class)co 5934   Q.cnq 7375    .Q cmq 7378    <Q cltq 7380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448
This theorem is referenced by:  prmuloc  7661
  Copyright terms: Public domain W3C validator