ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdiv0nq Unicode version

Theorem appdiv0nq 7121
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7120 in which  A is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
appdiv0nq  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
Distinct variable groups:    B, m    C, m

Proof of Theorem appdiv0nq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 6969 . . 3  |-  ( B  e.  Q.  ->  E. x  e.  Q.  x  <Q  B )
21adantr 270 . 2  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  Q.  x  <Q  B )
3 appdivnq 7120 . . . . 5  |-  ( ( x  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( x  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
4 simpr 108 . . . . . 6  |-  ( ( x  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B )  ->  (
m  .Q  C ) 
<Q  B )
54reximi 2470 . . . . 5  |-  ( E. m  e.  Q.  (
x  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B )  ->  E. m  e.  Q.  ( m  .Q  C )  <Q  B )
63, 5syl 14 . . . 4  |-  ( ( x  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
76ancoms 264 . . 3  |-  ( ( C  e.  Q.  /\  x  <Q  B )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
87ad2ant2l 492 . 2  |-  ( ( ( B  e.  Q.  /\  C  e.  Q. )  /\  ( x  e.  Q.  /\  x  <Q  B )
)  ->  E. m  e.  Q.  ( m  .Q  C )  <Q  B )
92, 8rexlimddv 2493 1  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C
)  <Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438   E.wrex 2360   class class class wbr 3845  (class class class)co 5652   Q.cnq 6837    .Q cmq 6840    <Q cltq 6842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910
This theorem is referenced by:  prmuloc  7123
  Copyright terms: Public domain W3C validator