| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > appdivnq | Unicode version | ||
| Description: Approximate division for
positive rationals.  Proposition 12.7 of
       [BauerTaylor], p. 55 (a special case
where  | 
| Ref | Expression | 
|---|---|
| appdivnq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . 4
 | |
| 2 | ltrelnq 7432 | 
. . . . . . . 8
 | |
| 3 | 2 | brel 4715 | 
. . . . . . 7
 | 
| 4 | 3 | adantr 276 | 
. . . . . 6
 | 
| 5 | 4 | simpld 112 | 
. . . . 5
 | 
| 6 | 4 | simprd 114 | 
. . . . 5
 | 
| 7 | recclnq 7459 | 
. . . . . 6
 | |
| 8 | 7 | adantl 277 | 
. . . . 5
 | 
| 9 | ltmnqg 7468 | 
. . . . 5
 | |
| 10 | 5, 6, 8, 9 | syl3anc 1249 | 
. . . 4
 | 
| 11 | 1, 10 | mpbid 147 | 
. . 3
 | 
| 12 | ltbtwnnqq 7482 | 
. . 3
 | |
| 13 | 11, 12 | sylib 122 | 
. 2
 | 
| 14 | 8 | adantr 276 | 
. . . . . . . . 9
 | 
| 15 | 5 | adantr 276 | 
. . . . . . . . 9
 | 
| 16 | mulclnq 7443 | 
. . . . . . . . 9
 | |
| 17 | 14, 15, 16 | syl2anc 411 | 
. . . . . . . 8
 | 
| 18 | simpr 110 | 
. . . . . . . 8
 | |
| 19 | simplr 528 | 
. . . . . . . 8
 | |
| 20 | ltmnqg 7468 | 
. . . . . . . 8
 | |
| 21 | 17, 18, 19, 20 | syl3anc 1249 | 
. . . . . . 7
 | 
| 22 | recidnq 7460 | 
. . . . . . . . . . 11
 | |
| 23 | 22 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 24 | 23 | ad2antlr 489 | 
. . . . . . . . 9
 | 
| 25 | mulassnqg 7451 | 
. . . . . . . . . 10
 | |
| 26 | 19, 14, 15, 25 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 27 | 1nq 7433 | 
. . . . . . . . . . . 12
 | |
| 28 | mulcomnqg 7450 | 
. . . . . . . . . . . 12
 | |
| 29 | 27, 28 | mpan 424 | 
. . . . . . . . . . 11
 | 
| 30 | mulidnq 7456 | 
. . . . . . . . . . 11
 | |
| 31 | 29, 30 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 32 | 15, 31 | syl 14 | 
. . . . . . . . 9
 | 
| 33 | 24, 26, 32 | 3eqtr3d 2237 | 
. . . . . . . 8
 | 
| 34 | 33 | breq1d 4043 | 
. . . . . . 7
 | 
| 35 | 21, 34 | bitrd 188 | 
. . . . . 6
 | 
| 36 | 6 | adantr 276 | 
. . . . . . . . 9
 | 
| 37 | mulclnq 7443 | 
. . . . . . . . 9
 | |
| 38 | 14, 36, 37 | syl2anc 411 | 
. . . . . . . 8
 | 
| 39 | ltmnqg 7468 | 
. . . . . . . 8
 | |
| 40 | 18, 38, 19, 39 | syl3anc 1249 | 
. . . . . . 7
 | 
| 41 | 22 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 42 | 41 | ad2antlr 489 | 
. . . . . . . . 9
 | 
| 43 | mulassnqg 7451 | 
. . . . . . . . . 10
 | |
| 44 | 19, 14, 36, 43 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 45 | mulcomnqg 7450 | 
. . . . . . . . . . . 12
 | |
| 46 | 27, 45 | mpan 424 | 
. . . . . . . . . . 11
 | 
| 47 | mulidnq 7456 | 
. . . . . . . . . . 11
 | |
| 48 | 46, 47 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 49 | 36, 48 | syl 14 | 
. . . . . . . . 9
 | 
| 50 | 42, 44, 49 | 3eqtr3d 2237 | 
. . . . . . . 8
 | 
| 51 | 50 | breq2d 4045 | 
. . . . . . 7
 | 
| 52 | 40, 51 | bitrd 188 | 
. . . . . 6
 | 
| 53 | 35, 52 | anbi12d 473 | 
. . . . 5
 | 
| 54 | mulcomnqg 7450 | 
. . . . . . . 8
 | |
| 55 | 19, 18, 54 | syl2anc 411 | 
. . . . . . 7
 | 
| 56 | 55 | breq2d 4045 | 
. . . . . 6
 | 
| 57 | 55 | breq1d 4043 | 
. . . . . 6
 | 
| 58 | 56, 57 | anbi12d 473 | 
. . . . 5
 | 
| 59 | 53, 58 | bitrd 188 | 
. . . 4
 | 
| 60 | 59 | biimpd 144 | 
. . 3
 | 
| 61 | 60 | reximdva 2599 | 
. 2
 | 
| 62 | 13, 61 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 | 
| This theorem is referenced by: appdiv0nq 7631 mullocpr 7638 | 
| Copyright terms: Public domain | W3C validator |