ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq Unicode version

Theorem appdivnq 7504
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Distinct variable groups:    A, m    B, m    C, m

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  <Q  B )
2 ltrelnq 7306 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4656 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
43adantr 274 . . . . . 6  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  e.  Q.  /\  B  e.  Q. )
)
54simpld 111 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  e.  Q. )
64simprd 113 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  B  e.  Q. )
7 recclnq 7333 . . . . . 6  |-  ( C  e.  Q.  ->  ( *Q `  C )  e. 
Q. )
87adantl 275 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( *Q `  C
)  e.  Q. )
9 ltmnqg 7342 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  C )  e. 
Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
105, 6, 8, 9syl3anc 1228 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
111, 10mpbid 146 . . 3  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  <Q  ( ( *Q
`  C )  .Q  B ) )
12 ltbtwnnqq 7356 . . 3  |-  ( ( ( *Q `  C
)  .Q  A ) 
<Q  ( ( *Q `  C )  .Q  B
)  <->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
1311, 12sylib 121 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
148adantr 274 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( *Q `  C )  e.  Q. )
155adantr 274 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  A  e.  Q. )
16 mulclnq 7317 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  e.  Q. )
1714, 15, 16syl2anc 409 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  A )  e.  Q. )
18 simpr 109 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  m  e.  Q. )
19 simplr 520 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  C  e.  Q. )
20 ltmnqg 7342 . . . . . . . 8  |-  ( ( ( ( *Q `  C )  .Q  A
)  e.  Q.  /\  m  e.  Q.  /\  C  e.  Q. )  ->  (
( ( *Q `  C )  .Q  A
)  <Q  m  <->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  <Q  ( C  .Q  m ) ) )
2117, 18, 19, 20syl3anc 1228 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  ( C  .Q  (
( *Q `  C
)  .Q  A ) )  <Q  ( C  .Q  m ) ) )
22 recidnq 7334 . . . . . . . . . . 11  |-  ( C  e.  Q.  ->  ( C  .Q  ( *Q `  C ) )  =  1Q )
2322oveq1d 5857 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A
) )
2423ad2antlr 481 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A ) )
25 mulassnqg 7325 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  A  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  (
( *Q `  C
)  .Q  A ) ) )
2619, 14, 15, 25syl3anc 1228 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  ( ( *Q `  C )  .Q  A ) ) )
27 1nq 7307 . . . . . . . . . . . 12  |-  1Q  e.  Q.
28 mulcomnqg 7324 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  A  e.  Q. )  ->  ( 1Q  .Q  A
)  =  ( A  .Q  1Q ) )
2927, 28mpan 421 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  ( A  .Q  1Q ) )
30 mulidnq 7330 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
3129, 30eqtrd 2198 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  A )
3215, 31syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  A )  =  A )
3324, 26, 323eqtr3d 2206 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  =  A )
3433breq1d 3992 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( ( *Q
`  C )  .Q  A ) )  <Q 
( C  .Q  m
)  <->  A  <Q  ( C  .Q  m ) ) )
3521, 34bitrd 187 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  A  <Q  ( C  .Q  m ) ) )
366adantr 274 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  B  e.  Q. )
37 mulclnq 7317 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  C )  .Q  B
)  e.  Q. )
3814, 36, 37syl2anc 409 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  B )  e.  Q. )
39 ltmnqg 7342 . . . . . . . 8  |-  ( ( m  e.  Q.  /\  ( ( *Q `  C )  .Q  B
)  e.  Q.  /\  C  e.  Q. )  ->  ( m  <Q  (
( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4018, 38, 19, 39syl3anc 1228 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4122oveq1d 5857 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B
) )
4241ad2antlr 481 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B ) )
43 mulassnqg 7325 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  B  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  (
( *Q `  C
)  .Q  B ) ) )
4419, 14, 36, 43syl3anc 1228 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  ( ( *Q `  C )  .Q  B ) ) )
45 mulcomnqg 7324 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  B  e.  Q. )  ->  ( 1Q  .Q  B
)  =  ( B  .Q  1Q ) )
4627, 45mpan 421 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  ( B  .Q  1Q ) )
47 mulidnq 7330 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  =  B )
4846, 47eqtrd 2198 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  B )
4936, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  B )  =  B )
5042, 44, 493eqtr3d 2206 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  B
) )  =  B )
5150breq2d 3994 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q 
( C  .Q  (
( *Q `  C
)  .Q  B ) )  <->  ( C  .Q  m )  <Q  B ) )
5240, 51bitrd 187 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  B ) )
5335, 52anbi12d 465 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B ) ) )
54 mulcomnqg 7324 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  m  e.  Q. )  ->  ( C  .Q  m
)  =  ( m  .Q  C ) )
5519, 18, 54syl2anc 409 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  m )  =  ( m  .Q  C ) )
5655breq2d 3994 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( A  <Q  ( C  .Q  m )  <-> 
A  <Q  ( m  .Q  C ) ) )
5755breq1d 3992 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q  B 
<->  ( m  .Q  C
)  <Q  B ) )
5856, 57anbi12d 465 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( A 
<Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B )  <-> 
( A  <Q  (
m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
5953, 58bitrd 187 . . . 4  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( m  .Q  C
)  /\  ( m  .Q  C )  <Q  B ) ) )
6059biimpd 143 . . 3  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  ->  ( A  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B ) ) )
6160reximdva 2568 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( E. m  e. 
Q.  ( ( ( *Q `  C )  .Q  A )  <Q  m  /\  m  <Q  (
( *Q `  C
)  .Q  B ) )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
6213, 61mpd 13 1  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   Q.cnq 7221   1Qc1q 7222    .Q cmq 7224   *Qcrq 7225    <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  appdiv0nq  7505  mullocpr  7512
  Copyright terms: Public domain W3C validator