Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > appdivnq | Unicode version |
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where and are positive, as well as ). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
appdivnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | ltrelnq 7306 | . . . . . . . 8 | |
3 | 2 | brel 4656 | . . . . . . 7 |
4 | 3 | adantr 274 | . . . . . 6 |
5 | 4 | simpld 111 | . . . . 5 |
6 | 4 | simprd 113 | . . . . 5 |
7 | recclnq 7333 | . . . . . 6 | |
8 | 7 | adantl 275 | . . . . 5 |
9 | ltmnqg 7342 | . . . . 5 | |
10 | 5, 6, 8, 9 | syl3anc 1228 | . . . 4 |
11 | 1, 10 | mpbid 146 | . . 3 |
12 | ltbtwnnqq 7356 | . . 3 | |
13 | 11, 12 | sylib 121 | . 2 |
14 | 8 | adantr 274 | . . . . . . . . 9 |
15 | 5 | adantr 274 | . . . . . . . . 9 |
16 | mulclnq 7317 | . . . . . . . . 9 | |
17 | 14, 15, 16 | syl2anc 409 | . . . . . . . 8 |
18 | simpr 109 | . . . . . . . 8 | |
19 | simplr 520 | . . . . . . . 8 | |
20 | ltmnqg 7342 | . . . . . . . 8 | |
21 | 17, 18, 19, 20 | syl3anc 1228 | . . . . . . 7 |
22 | recidnq 7334 | . . . . . . . . . . 11 | |
23 | 22 | oveq1d 5857 | . . . . . . . . . 10 |
24 | 23 | ad2antlr 481 | . . . . . . . . 9 |
25 | mulassnqg 7325 | . . . . . . . . . 10 | |
26 | 19, 14, 15, 25 | syl3anc 1228 | . . . . . . . . 9 |
27 | 1nq 7307 | . . . . . . . . . . . 12 | |
28 | mulcomnqg 7324 | . . . . . . . . . . . 12 | |
29 | 27, 28 | mpan 421 | . . . . . . . . . . 11 |
30 | mulidnq 7330 | . . . . . . . . . . 11 | |
31 | 29, 30 | eqtrd 2198 | . . . . . . . . . 10 |
32 | 15, 31 | syl 14 | . . . . . . . . 9 |
33 | 24, 26, 32 | 3eqtr3d 2206 | . . . . . . . 8 |
34 | 33 | breq1d 3992 | . . . . . . 7 |
35 | 21, 34 | bitrd 187 | . . . . . 6 |
36 | 6 | adantr 274 | . . . . . . . . 9 |
37 | mulclnq 7317 | . . . . . . . . 9 | |
38 | 14, 36, 37 | syl2anc 409 | . . . . . . . 8 |
39 | ltmnqg 7342 | . . . . . . . 8 | |
40 | 18, 38, 19, 39 | syl3anc 1228 | . . . . . . 7 |
41 | 22 | oveq1d 5857 | . . . . . . . . . 10 |
42 | 41 | ad2antlr 481 | . . . . . . . . 9 |
43 | mulassnqg 7325 | . . . . . . . . . 10 | |
44 | 19, 14, 36, 43 | syl3anc 1228 | . . . . . . . . 9 |
45 | mulcomnqg 7324 | . . . . . . . . . . . 12 | |
46 | 27, 45 | mpan 421 | . . . . . . . . . . 11 |
47 | mulidnq 7330 | . . . . . . . . . . 11 | |
48 | 46, 47 | eqtrd 2198 | . . . . . . . . . 10 |
49 | 36, 48 | syl 14 | . . . . . . . . 9 |
50 | 42, 44, 49 | 3eqtr3d 2206 | . . . . . . . 8 |
51 | 50 | breq2d 3994 | . . . . . . 7 |
52 | 40, 51 | bitrd 187 | . . . . . 6 |
53 | 35, 52 | anbi12d 465 | . . . . 5 |
54 | mulcomnqg 7324 | . . . . . . . 8 | |
55 | 19, 18, 54 | syl2anc 409 | . . . . . . 7 |
56 | 55 | breq2d 3994 | . . . . . 6 |
57 | 55 | breq1d 3992 | . . . . . 6 |
58 | 56, 57 | anbi12d 465 | . . . . 5 |
59 | 53, 58 | bitrd 187 | . . . 4 |
60 | 59 | biimpd 143 | . . 3 |
61 | 60 | reximdva 2568 | . 2 |
62 | 13, 61 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 cfv 5188 (class class class)co 5842 cnq 7221 c1q 7222 cmq 7224 crq 7225 cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 |
This theorem is referenced by: appdiv0nq 7505 mullocpr 7512 |
Copyright terms: Public domain | W3C validator |