ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq Unicode version

Theorem appdivnq 7625
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Distinct variable groups:    A, m    B, m    C, m

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  <Q  B )
2 ltrelnq 7427 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4712 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
43adantr 276 . . . . . 6  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  e.  Q.  /\  B  e.  Q. )
)
54simpld 112 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  e.  Q. )
64simprd 114 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  B  e.  Q. )
7 recclnq 7454 . . . . . 6  |-  ( C  e.  Q.  ->  ( *Q `  C )  e. 
Q. )
87adantl 277 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( *Q `  C
)  e.  Q. )
9 ltmnqg 7463 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  C )  e. 
Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
105, 6, 8, 9syl3anc 1249 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
111, 10mpbid 147 . . 3  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  <Q  ( ( *Q
`  C )  .Q  B ) )
12 ltbtwnnqq 7477 . . 3  |-  ( ( ( *Q `  C
)  .Q  A ) 
<Q  ( ( *Q `  C )  .Q  B
)  <->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
1311, 12sylib 122 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
148adantr 276 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( *Q `  C )  e.  Q. )
155adantr 276 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  A  e.  Q. )
16 mulclnq 7438 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  e.  Q. )
1714, 15, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  A )  e.  Q. )
18 simpr 110 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  m  e.  Q. )
19 simplr 528 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  C  e.  Q. )
20 ltmnqg 7463 . . . . . . . 8  |-  ( ( ( ( *Q `  C )  .Q  A
)  e.  Q.  /\  m  e.  Q.  /\  C  e.  Q. )  ->  (
( ( *Q `  C )  .Q  A
)  <Q  m  <->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  <Q  ( C  .Q  m ) ) )
2117, 18, 19, 20syl3anc 1249 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  ( C  .Q  (
( *Q `  C
)  .Q  A ) )  <Q  ( C  .Q  m ) ) )
22 recidnq 7455 . . . . . . . . . . 11  |-  ( C  e.  Q.  ->  ( C  .Q  ( *Q `  C ) )  =  1Q )
2322oveq1d 5934 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A
) )
2423ad2antlr 489 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A ) )
25 mulassnqg 7446 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  A  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  (
( *Q `  C
)  .Q  A ) ) )
2619, 14, 15, 25syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  ( ( *Q `  C )  .Q  A ) ) )
27 1nq 7428 . . . . . . . . . . . 12  |-  1Q  e.  Q.
28 mulcomnqg 7445 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  A  e.  Q. )  ->  ( 1Q  .Q  A
)  =  ( A  .Q  1Q ) )
2927, 28mpan 424 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  ( A  .Q  1Q ) )
30 mulidnq 7451 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
3129, 30eqtrd 2226 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  A )
3215, 31syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  A )  =  A )
3324, 26, 323eqtr3d 2234 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  =  A )
3433breq1d 4040 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( ( *Q
`  C )  .Q  A ) )  <Q 
( C  .Q  m
)  <->  A  <Q  ( C  .Q  m ) ) )
3521, 34bitrd 188 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  A  <Q  ( C  .Q  m ) ) )
366adantr 276 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  B  e.  Q. )
37 mulclnq 7438 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  C )  .Q  B
)  e.  Q. )
3814, 36, 37syl2anc 411 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  B )  e.  Q. )
39 ltmnqg 7463 . . . . . . . 8  |-  ( ( m  e.  Q.  /\  ( ( *Q `  C )  .Q  B
)  e.  Q.  /\  C  e.  Q. )  ->  ( m  <Q  (
( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4018, 38, 19, 39syl3anc 1249 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4122oveq1d 5934 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B
) )
4241ad2antlr 489 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B ) )
43 mulassnqg 7446 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  B  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  (
( *Q `  C
)  .Q  B ) ) )
4419, 14, 36, 43syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  ( ( *Q `  C )  .Q  B ) ) )
45 mulcomnqg 7445 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  B  e.  Q. )  ->  ( 1Q  .Q  B
)  =  ( B  .Q  1Q ) )
4627, 45mpan 424 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  ( B  .Q  1Q ) )
47 mulidnq 7451 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  =  B )
4846, 47eqtrd 2226 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  B )
4936, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  B )  =  B )
5042, 44, 493eqtr3d 2234 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  B
) )  =  B )
5150breq2d 4042 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q 
( C  .Q  (
( *Q `  C
)  .Q  B ) )  <->  ( C  .Q  m )  <Q  B ) )
5240, 51bitrd 188 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  B ) )
5335, 52anbi12d 473 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B ) ) )
54 mulcomnqg 7445 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  m  e.  Q. )  ->  ( C  .Q  m
)  =  ( m  .Q  C ) )
5519, 18, 54syl2anc 411 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  m )  =  ( m  .Q  C ) )
5655breq2d 4042 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( A  <Q  ( C  .Q  m )  <-> 
A  <Q  ( m  .Q  C ) ) )
5755breq1d 4040 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q  B 
<->  ( m  .Q  C
)  <Q  B ) )
5856, 57anbi12d 473 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( A 
<Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B )  <-> 
( A  <Q  (
m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
5953, 58bitrd 188 . . . 4  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( m  .Q  C
)  /\  ( m  .Q  C )  <Q  B ) ) )
6059biimpd 144 . . 3  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  ->  ( A  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B ) ) )
6160reximdva 2596 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( E. m  e. 
Q.  ( ( ( *Q `  C )  .Q  A )  <Q  m  /\  m  <Q  (
( *Q `  C
)  .Q  B ) )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
6213, 61mpd 13 1  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   Q.cnq 7342   1Qc1q 7343    .Q cmq 7345   *Qcrq 7346    <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  appdiv0nq  7626  mullocpr  7633
  Copyright terms: Public domain W3C validator