| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > appdivnq | Unicode version | ||
| Description: Approximate division for
positive rationals. Proposition 12.7 of
[BauerTaylor], p. 55 (a special case
where |
| Ref | Expression |
|---|---|
| appdivnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | ltrelnq 7460 |
. . . . . . . 8
| |
| 3 | 2 | brel 4725 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | 4 | simpld 112 |
. . . . 5
|
| 6 | 4 | simprd 114 |
. . . . 5
|
| 7 | recclnq 7487 |
. . . . . 6
| |
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | ltmnqg 7496 |
. . . . 5
| |
| 10 | 5, 6, 8, 9 | syl3anc 1249 |
. . . 4
|
| 11 | 1, 10 | mpbid 147 |
. . 3
|
| 12 | ltbtwnnqq 7510 |
. . 3
| |
| 13 | 11, 12 | sylib 122 |
. 2
|
| 14 | 8 | adantr 276 |
. . . . . . . . 9
|
| 15 | 5 | adantr 276 |
. . . . . . . . 9
|
| 16 | mulclnq 7471 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | simplr 528 |
. . . . . . . 8
| |
| 20 | ltmnqg 7496 |
. . . . . . . 8
| |
| 21 | 17, 18, 19, 20 | syl3anc 1249 |
. . . . . . 7
|
| 22 | recidnq 7488 |
. . . . . . . . . . 11
| |
| 23 | 22 | oveq1d 5949 |
. . . . . . . . . 10
|
| 24 | 23 | ad2antlr 489 |
. . . . . . . . 9
|
| 25 | mulassnqg 7479 |
. . . . . . . . . 10
| |
| 26 | 19, 14, 15, 25 | syl3anc 1249 |
. . . . . . . . 9
|
| 27 | 1nq 7461 |
. . . . . . . . . . . 12
| |
| 28 | mulcomnqg 7478 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | mpan 424 |
. . . . . . . . . . 11
|
| 30 | mulidnq 7484 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | eqtrd 2237 |
. . . . . . . . . 10
|
| 32 | 15, 31 | syl 14 |
. . . . . . . . 9
|
| 33 | 24, 26, 32 | 3eqtr3d 2245 |
. . . . . . . 8
|
| 34 | 33 | breq1d 4053 |
. . . . . . 7
|
| 35 | 21, 34 | bitrd 188 |
. . . . . 6
|
| 36 | 6 | adantr 276 |
. . . . . . . . 9
|
| 37 | mulclnq 7471 |
. . . . . . . . 9
| |
| 38 | 14, 36, 37 | syl2anc 411 |
. . . . . . . 8
|
| 39 | ltmnqg 7496 |
. . . . . . . 8
| |
| 40 | 18, 38, 19, 39 | syl3anc 1249 |
. . . . . . 7
|
| 41 | 22 | oveq1d 5949 |
. . . . . . . . . 10
|
| 42 | 41 | ad2antlr 489 |
. . . . . . . . 9
|
| 43 | mulassnqg 7479 |
. . . . . . . . . 10
| |
| 44 | 19, 14, 36, 43 | syl3anc 1249 |
. . . . . . . . 9
|
| 45 | mulcomnqg 7478 |
. . . . . . . . . . . 12
| |
| 46 | 27, 45 | mpan 424 |
. . . . . . . . . . 11
|
| 47 | mulidnq 7484 |
. . . . . . . . . . 11
| |
| 48 | 46, 47 | eqtrd 2237 |
. . . . . . . . . 10
|
| 49 | 36, 48 | syl 14 |
. . . . . . . . 9
|
| 50 | 42, 44, 49 | 3eqtr3d 2245 |
. . . . . . . 8
|
| 51 | 50 | breq2d 4055 |
. . . . . . 7
|
| 52 | 40, 51 | bitrd 188 |
. . . . . 6
|
| 53 | 35, 52 | anbi12d 473 |
. . . . 5
|
| 54 | mulcomnqg 7478 |
. . . . . . . 8
| |
| 55 | 19, 18, 54 | syl2anc 411 |
. . . . . . 7
|
| 56 | 55 | breq2d 4055 |
. . . . . 6
|
| 57 | 55 | breq1d 4053 |
. . . . . 6
|
| 58 | 56, 57 | anbi12d 473 |
. . . . 5
|
| 59 | 53, 58 | bitrd 188 |
. . . 4
|
| 60 | 59 | biimpd 144 |
. . 3
|
| 61 | 60 | reximdva 2607 |
. 2
|
| 62 | 13, 61 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 |
| This theorem is referenced by: appdiv0nq 7659 mullocpr 7666 |
| Copyright terms: Public domain | W3C validator |