![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > appdiv0nq | GIF version |
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7561 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
appdiv0nq | ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 7410 | . . 3 ⊢ (𝐵 ∈ Q → ∃𝑥 ∈ Q 𝑥 <Q 𝐵) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑥 ∈ Q 𝑥 <Q 𝐵) |
3 | appdivnq 7561 | . . . . 5 ⊢ ((𝑥 <Q 𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)) | |
4 | simpr 110 | . . . . . 6 ⊢ ((𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → (𝑚 ·Q 𝐶) <Q 𝐵) | |
5 | 4 | reximi 2574 | . . . . 5 ⊢ (∃𝑚 ∈ Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
6 | 3, 5 | syl 14 | . . . 4 ⊢ ((𝑥 <Q 𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
7 | 6 | ancoms 268 | . . 3 ⊢ ((𝐶 ∈ Q ∧ 𝑥 <Q 𝐵) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
8 | 7 | ad2ant2l 508 | . 2 ⊢ (((𝐵 ∈ Q ∧ 𝐶 ∈ Q) ∧ (𝑥 ∈ Q ∧ 𝑥 <Q 𝐵)) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
9 | 2, 8 | rexlimddv 2599 | 1 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4003 (class class class)co 5874 Qcnq 7278 ·Q cmq 7281 <Q cltq 7283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-eprel 4289 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-irdg 6370 df-1o 6416 df-oadd 6420 df-omul 6421 df-er 6534 df-ec 6536 df-qs 6540 df-ni 7302 df-pli 7303 df-mi 7304 df-lti 7305 df-plpq 7342 df-mpq 7343 df-enq 7345 df-nqqs 7346 df-plqqs 7347 df-mqqs 7348 df-1nqqs 7349 df-rq 7350 df-ltnqqs 7351 |
This theorem is referenced by: prmuloc 7564 |
Copyright terms: Public domain | W3C validator |