ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdiv0nq GIF version

Theorem appdiv0nq 7631
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7630 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
appdiv0nq ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdiv0nq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7479 . . 3 (𝐵Q → ∃𝑥Q 𝑥 <Q 𝐵)
21adantr 276 . 2 ((𝐵Q𝐶Q) → ∃𝑥Q 𝑥 <Q 𝐵)
3 appdivnq 7630 . . . . 5 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
4 simpr 110 . . . . . 6 ((𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → (𝑚 ·Q 𝐶) <Q 𝐵)
54reximi 2594 . . . . 5 (∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
63, 5syl 14 . . . 4 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
76ancoms 268 . . 3 ((𝐶Q𝑥 <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
87ad2ant2l 508 . 2 (((𝐵Q𝐶Q) ∧ (𝑥Q𝑥 <Q 𝐵)) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
92, 8rexlimddv 2619 1 ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476   class class class wbr 4033  (class class class)co 5922  Qcnq 7347   ·Q cmq 7350   <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420
This theorem is referenced by:  prmuloc  7633
  Copyright terms: Public domain W3C validator