![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > appdiv0nq | GIF version |
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7623 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
appdiv0nq | ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 7472 | . . 3 ⊢ (𝐵 ∈ Q → ∃𝑥 ∈ Q 𝑥 <Q 𝐵) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑥 ∈ Q 𝑥 <Q 𝐵) |
3 | appdivnq 7623 | . . . . 5 ⊢ ((𝑥 <Q 𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)) | |
4 | simpr 110 | . . . . . 6 ⊢ ((𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → (𝑚 ·Q 𝐶) <Q 𝐵) | |
5 | 4 | reximi 2591 | . . . . 5 ⊢ (∃𝑚 ∈ Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
6 | 3, 5 | syl 14 | . . . 4 ⊢ ((𝑥 <Q 𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
7 | 6 | ancoms 268 | . . 3 ⊢ ((𝐶 ∈ Q ∧ 𝑥 <Q 𝐵) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
8 | 7 | ad2ant2l 508 | . 2 ⊢ (((𝐵 ∈ Q ∧ 𝐶 ∈ Q) ∧ (𝑥 ∈ Q ∧ 𝑥 <Q 𝐵)) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
9 | 2, 8 | rexlimddv 2616 | 1 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·Q 𝐶) <Q 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4029 (class class class)co 5918 Qcnq 7340 ·Q cmq 7343 <Q cltq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 |
This theorem is referenced by: prmuloc 7626 |
Copyright terms: Public domain | W3C validator |