ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdiv0nq GIF version

Theorem appdiv0nq 7719
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7718 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
appdiv0nq ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdiv0nq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7567 . . 3 (𝐵Q → ∃𝑥Q 𝑥 <Q 𝐵)
21adantr 276 . 2 ((𝐵Q𝐶Q) → ∃𝑥Q 𝑥 <Q 𝐵)
3 appdivnq 7718 . . . . 5 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
4 simpr 110 . . . . . 6 ((𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → (𝑚 ·Q 𝐶) <Q 𝐵)
54reximi 2607 . . . . 5 (∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
63, 5syl 14 . . . 4 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
76ancoms 268 . . 3 ((𝐶Q𝑥 <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
87ad2ant2l 508 . 2 (((𝐵Q𝐶Q) ∧ (𝑥Q𝑥 <Q 𝐵)) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
92, 8rexlimddv 2633 1 ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180  wrex 2489   class class class wbr 4062  (class class class)co 5974  Qcnq 7435   ·Q cmq 7438   <Q cltq 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508
This theorem is referenced by:  prmuloc  7721
  Copyright terms: Public domain W3C validator