ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloclemcalc Unicode version

Theorem prmuloclemcalc 7698
Description: Calculations for prmuloc 7699. (Contributed by Jim Kingdon, 9-Dec-2019.)
Hypotheses
Ref Expression
prmuloclemcalc.ru  |-  ( ph  ->  R  <Q  U )
prmuloclemcalc.udp  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
prmuloclemcalc.axb  |-  ( ph  ->  ( A  +Q  X
)  =  B )
prmuloclemcalc.pbrx  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
prmuloclemcalc.a  |-  ( ph  ->  A  e.  Q. )
prmuloclemcalc.b  |-  ( ph  ->  B  e.  Q. )
prmuloclemcalc.d  |-  ( ph  ->  D  e.  Q. )
prmuloclemcalc.p  |-  ( ph  ->  P  e.  Q. )
prmuloclemcalc.x  |-  ( ph  ->  X  e.  Q. )
Assertion
Ref Expression
prmuloclemcalc  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )

Proof of Theorem prmuloclemcalc
StepHypRef Expression
1 prmuloclemcalc.axb . . . . . . 7  |-  ( ph  ->  ( A  +Q  X
)  =  B )
21oveq2d 5973 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( U  .Q  B ) )
3 prmuloclemcalc.ru . . . . . . . . 9  |-  ( ph  ->  R  <Q  U )
4 ltrelnq 7498 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4735 . . . . . . . . 9  |-  ( R 
<Q  U  ->  ( R  e.  Q.  /\  U  e.  Q. ) )
63, 5syl 14 . . . . . . . 8  |-  ( ph  ->  ( R  e.  Q.  /\  U  e.  Q. )
)
76simprd 114 . . . . . . 7  |-  ( ph  ->  U  e.  Q. )
8 prmuloclemcalc.a . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
9 prmuloclemcalc.x . . . . . . 7  |-  ( ph  ->  X  e.  Q. )
10 distrnqg 7520 . . . . . . 7  |-  ( ( U  e.  Q.  /\  A  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
117, 8, 9, 10syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X
) ) )
122, 11eqtr3d 2241 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
13 prmuloclemcalc.b . . . . . . 7  |-  ( ph  ->  B  e.  Q. )
14 mulcomnqg 7516 . . . . . . 7  |-  ( ( B  e.  Q.  /\  U  e.  Q. )  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
1513, 7, 14syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
16 prmuloclemcalc.udp . . . . . . . . . 10  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
17 ltmnqi 7536 . . . . . . . . . 10  |-  ( ( U  <Q  ( D  +Q  P )  /\  B  e.  Q. )  ->  ( B  .Q  U )  <Q 
( B  .Q  ( D  +Q  P ) ) )
1816, 13, 17syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( B  .Q  ( D  +Q  P
) ) )
19 prmuloclemcalc.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
20 prmuloclemcalc.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  Q. )
21 distrnqg 7520 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q.  /\  P  e.  Q. )  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) )
2213, 19, 20, 21syl3anc 1250 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
2318, 22breqtrd 4077 . . . . . . . 8  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
24 mulcomnqg 7516 . . . . . . . . . . 11  |-  ( ( P  e.  Q.  /\  B  e.  Q. )  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
2520, 13, 24syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
26 prmuloclemcalc.pbrx . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
2725, 26eqbrtrrd 4075 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  P
)  <Q  ( R  .Q  X ) )
28 mulclnq 7509 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  e.  Q. )
2913, 19, 28syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  D
)  e.  Q. )
30 ltanqi 7535 . . . . . . . . 9  |-  ( ( ( B  .Q  P
)  <Q  ( R  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
3127, 29, 30syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
32 ltsonq 7531 . . . . . . . . 9  |-  <Q  Or  Q.
3332, 4sotri 5087 . . . . . . . 8  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) )  /\  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) )
3423, 31, 33syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) ) )
35 ltmnqi 7536 . . . . . . . . . 10  |-  ( ( R  <Q  U  /\  X  e.  Q. )  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
363, 9, 35syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
376simpld 112 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Q. )
38 mulcomnqg 7516 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  R  e.  Q. )  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
399, 37, 38syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
40 mulcomnqg 7516 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  U  e.  Q. )  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
419, 7, 40syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
4236, 39, 413brtr3d 4082 . . . . . . . 8  |-  ( ph  ->  ( R  .Q  X
)  <Q  ( U  .Q  X ) )
43 ltanqi 7535 . . . . . . . 8  |-  ( ( ( R  .Q  X
)  <Q  ( U  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4442, 29, 43syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4532, 4sotri 5087 . . . . . . 7  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) )  /\  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( U  .Q  X ) ) )
4634, 44, 45syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4715, 46eqbrtrrd 4075 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4812, 47eqbrtrrd 4075 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
49 mulclnq 7509 . . . . . 6  |-  ( ( U  e.  Q.  /\  A  e.  Q. )  ->  ( U  .Q  A
)  e.  Q. )
507, 8, 49syl2anc 411 . . . . 5  |-  ( ph  ->  ( U  .Q  A
)  e.  Q. )
51 mulclnq 7509 . . . . . 6  |-  ( ( U  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  X
)  e.  Q. )
527, 9, 51syl2anc 411 . . . . 5  |-  ( ph  ->  ( U  .Q  X
)  e.  Q. )
53 addcomnqg 7514 . . . . 5  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
5450, 52, 53syl2anc 411 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
55 addcomnqg 7514 . . . . 5  |-  ( ( ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5629, 52, 55syl2anc 411 . . . 4  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5748, 54, 563brtr3d 4082 . . 3  |-  ( ph  ->  ( ( U  .Q  X )  +Q  ( U  .Q  A ) ) 
<Q  ( ( U  .Q  X )  +Q  ( B  .Q  D ) ) )
58 ltanqg 7533 . . . 4  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
5950, 29, 52, 58syl3anc 1250 . . 3  |-  ( ph  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
6057, 59mpbird 167 . 2  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( B  .Q  D ) )
61 mulcomnqg 7516 . . 3  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6213, 19, 61syl2anc 411 . 2  |-  ( ph  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6360, 62breqtrd 4077 1  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   Q.cnq 7413    +Q cplq 7415    .Q cmq 7416    <Q cltq 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-ltnqqs 7486
This theorem is referenced by:  prmuloc  7699
  Copyright terms: Public domain W3C validator