| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmuloclemcalc | Unicode version | ||
| Description: Calculations for prmuloc 7749. (Contributed by Jim Kingdon, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| prmuloclemcalc.ru |
|
| prmuloclemcalc.udp |
|
| prmuloclemcalc.axb |
|
| prmuloclemcalc.pbrx |
|
| prmuloclemcalc.a |
|
| prmuloclemcalc.b |
|
| prmuloclemcalc.d |
|
| prmuloclemcalc.p |
|
| prmuloclemcalc.x |
|
| Ref | Expression |
|---|---|
| prmuloclemcalc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuloclemcalc.axb |
. . . . . . 7
| |
| 2 | 1 | oveq2d 6016 |
. . . . . 6
|
| 3 | prmuloclemcalc.ru |
. . . . . . . . 9
| |
| 4 | ltrelnq 7548 |
. . . . . . . . . 10
| |
| 5 | 4 | brel 4770 |
. . . . . . . . 9
|
| 6 | 3, 5 | syl 14 |
. . . . . . . 8
|
| 7 | 6 | simprd 114 |
. . . . . . 7
|
| 8 | prmuloclemcalc.a |
. . . . . . 7
| |
| 9 | prmuloclemcalc.x |
. . . . . . 7
| |
| 10 | distrnqg 7570 |
. . . . . . 7
| |
| 11 | 7, 8, 9, 10 | syl3anc 1271 |
. . . . . 6
|
| 12 | 2, 11 | eqtr3d 2264 |
. . . . 5
|
| 13 | prmuloclemcalc.b |
. . . . . . 7
| |
| 14 | mulcomnqg 7566 |
. . . . . . 7
| |
| 15 | 13, 7, 14 | syl2anc 411 |
. . . . . 6
|
| 16 | prmuloclemcalc.udp |
. . . . . . . . . 10
| |
| 17 | ltmnqi 7586 |
. . . . . . . . . 10
| |
| 18 | 16, 13, 17 | syl2anc 411 |
. . . . . . . . 9
|
| 19 | prmuloclemcalc.d |
. . . . . . . . . 10
| |
| 20 | prmuloclemcalc.p |
. . . . . . . . . 10
| |
| 21 | distrnqg 7570 |
. . . . . . . . . 10
| |
| 22 | 13, 19, 20, 21 | syl3anc 1271 |
. . . . . . . . 9
|
| 23 | 18, 22 | breqtrd 4108 |
. . . . . . . 8
|
| 24 | mulcomnqg 7566 |
. . . . . . . . . . 11
| |
| 25 | 20, 13, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | prmuloclemcalc.pbrx |
. . . . . . . . . 10
| |
| 27 | 25, 26 | eqbrtrrd 4106 |
. . . . . . . . 9
|
| 28 | mulclnq 7559 |
. . . . . . . . . 10
| |
| 29 | 13, 19, 28 | syl2anc 411 |
. . . . . . . . 9
|
| 30 | ltanqi 7585 |
. . . . . . . . 9
| |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . . . . . 8
|
| 32 | ltsonq 7581 |
. . . . . . . . 9
| |
| 33 | 32, 4 | sotri 5123 |
. . . . . . . 8
|
| 34 | 23, 31, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | ltmnqi 7586 |
. . . . . . . . . 10
| |
| 36 | 3, 9, 35 | syl2anc 411 |
. . . . . . . . 9
|
| 37 | 6 | simpld 112 |
. . . . . . . . . 10
|
| 38 | mulcomnqg 7566 |
. . . . . . . . . 10
| |
| 39 | 9, 37, 38 | syl2anc 411 |
. . . . . . . . 9
|
| 40 | mulcomnqg 7566 |
. . . . . . . . . 10
| |
| 41 | 9, 7, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 36, 39, 41 | 3brtr3d 4113 |
. . . . . . . 8
|
| 43 | ltanqi 7585 |
. . . . . . . 8
| |
| 44 | 42, 29, 43 | syl2anc 411 |
. . . . . . 7
|
| 45 | 32, 4 | sotri 5123 |
. . . . . . 7
|
| 46 | 34, 44, 45 | syl2anc 411 |
. . . . . 6
|
| 47 | 15, 46 | eqbrtrrd 4106 |
. . . . 5
|
| 48 | 12, 47 | eqbrtrrd 4106 |
. . . 4
|
| 49 | mulclnq 7559 |
. . . . . 6
| |
| 50 | 7, 8, 49 | syl2anc 411 |
. . . . 5
|
| 51 | mulclnq 7559 |
. . . . . 6
| |
| 52 | 7, 9, 51 | syl2anc 411 |
. . . . 5
|
| 53 | addcomnqg 7564 |
. . . . 5
| |
| 54 | 50, 52, 53 | syl2anc 411 |
. . . 4
|
| 55 | addcomnqg 7564 |
. . . . 5
| |
| 56 | 29, 52, 55 | syl2anc 411 |
. . . 4
|
| 57 | 48, 54, 56 | 3brtr3d 4113 |
. . 3
|
| 58 | ltanqg 7583 |
. . . 4
| |
| 59 | 50, 29, 52, 58 | syl3anc 1271 |
. . 3
|
| 60 | 57, 59 | mpbird 167 |
. 2
|
| 61 | mulcomnqg 7566 |
. . 3
| |
| 62 | 13, 19, 61 | syl2anc 411 |
. 2
|
| 63 | 60, 62 | breqtrd 4108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-ltnqqs 7536 |
| This theorem is referenced by: prmuloc 7749 |
| Copyright terms: Public domain | W3C validator |