Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmuloclemcalc | Unicode version |
Description: Calculations for prmuloc 7469. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
prmuloclemcalc.ru | |
prmuloclemcalc.udp | |
prmuloclemcalc.axb | |
prmuloclemcalc.pbrx | |
prmuloclemcalc.a | |
prmuloclemcalc.b | |
prmuloclemcalc.d | |
prmuloclemcalc.p | |
prmuloclemcalc.x |
Ref | Expression |
---|---|
prmuloclemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuloclemcalc.axb | . . . . . . 7 | |
2 | 1 | oveq2d 5834 | . . . . . 6 |
3 | prmuloclemcalc.ru | . . . . . . . . 9 | |
4 | ltrelnq 7268 | . . . . . . . . . 10 | |
5 | 4 | brel 4635 | . . . . . . . . 9 |
6 | 3, 5 | syl 14 | . . . . . . . 8 |
7 | 6 | simprd 113 | . . . . . . 7 |
8 | prmuloclemcalc.a | . . . . . . 7 | |
9 | prmuloclemcalc.x | . . . . . . 7 | |
10 | distrnqg 7290 | . . . . . . 7 | |
11 | 7, 8, 9, 10 | syl3anc 1220 | . . . . . 6 |
12 | 2, 11 | eqtr3d 2192 | . . . . 5 |
13 | prmuloclemcalc.b | . . . . . . 7 | |
14 | mulcomnqg 7286 | . . . . . . 7 | |
15 | 13, 7, 14 | syl2anc 409 | . . . . . 6 |
16 | prmuloclemcalc.udp | . . . . . . . . . 10 | |
17 | ltmnqi 7306 | . . . . . . . . . 10 | |
18 | 16, 13, 17 | syl2anc 409 | . . . . . . . . 9 |
19 | prmuloclemcalc.d | . . . . . . . . . 10 | |
20 | prmuloclemcalc.p | . . . . . . . . . 10 | |
21 | distrnqg 7290 | . . . . . . . . . 10 | |
22 | 13, 19, 20, 21 | syl3anc 1220 | . . . . . . . . 9 |
23 | 18, 22 | breqtrd 3990 | . . . . . . . 8 |
24 | mulcomnqg 7286 | . . . . . . . . . . 11 | |
25 | 20, 13, 24 | syl2anc 409 | . . . . . . . . . 10 |
26 | prmuloclemcalc.pbrx | . . . . . . . . . 10 | |
27 | 25, 26 | eqbrtrrd 3988 | . . . . . . . . 9 |
28 | mulclnq 7279 | . . . . . . . . . 10 | |
29 | 13, 19, 28 | syl2anc 409 | . . . . . . . . 9 |
30 | ltanqi 7305 | . . . . . . . . 9 | |
31 | 27, 29, 30 | syl2anc 409 | . . . . . . . 8 |
32 | ltsonq 7301 | . . . . . . . . 9 | |
33 | 32, 4 | sotri 4978 | . . . . . . . 8 |
34 | 23, 31, 33 | syl2anc 409 | . . . . . . 7 |
35 | ltmnqi 7306 | . . . . . . . . . 10 | |
36 | 3, 9, 35 | syl2anc 409 | . . . . . . . . 9 |
37 | 6 | simpld 111 | . . . . . . . . . 10 |
38 | mulcomnqg 7286 | . . . . . . . . . 10 | |
39 | 9, 37, 38 | syl2anc 409 | . . . . . . . . 9 |
40 | mulcomnqg 7286 | . . . . . . . . . 10 | |
41 | 9, 7, 40 | syl2anc 409 | . . . . . . . . 9 |
42 | 36, 39, 41 | 3brtr3d 3995 | . . . . . . . 8 |
43 | ltanqi 7305 | . . . . . . . 8 | |
44 | 42, 29, 43 | syl2anc 409 | . . . . . . 7 |
45 | 32, 4 | sotri 4978 | . . . . . . 7 |
46 | 34, 44, 45 | syl2anc 409 | . . . . . 6 |
47 | 15, 46 | eqbrtrrd 3988 | . . . . 5 |
48 | 12, 47 | eqbrtrrd 3988 | . . . 4 |
49 | mulclnq 7279 | . . . . . 6 | |
50 | 7, 8, 49 | syl2anc 409 | . . . . 5 |
51 | mulclnq 7279 | . . . . . 6 | |
52 | 7, 9, 51 | syl2anc 409 | . . . . 5 |
53 | addcomnqg 7284 | . . . . 5 | |
54 | 50, 52, 53 | syl2anc 409 | . . . 4 |
55 | addcomnqg 7284 | . . . . 5 | |
56 | 29, 52, 55 | syl2anc 409 | . . . 4 |
57 | 48, 54, 56 | 3brtr3d 3995 | . . 3 |
58 | ltanqg 7303 | . . . 4 | |
59 | 50, 29, 52, 58 | syl3anc 1220 | . . 3 |
60 | 57, 59 | mpbird 166 | . 2 |
61 | mulcomnqg 7286 | . . 3 | |
62 | 13, 19, 61 | syl2anc 409 | . 2 |
63 | 60, 62 | breqtrd 3990 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5818 cnq 7183 cplq 7185 cmq 7186 cltq 7188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-ltnqqs 7256 |
This theorem is referenced by: prmuloc 7469 |
Copyright terms: Public domain | W3C validator |