Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmuloclemcalc | Unicode version |
Description: Calculations for prmuloc 7528. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
prmuloclemcalc.ru | |
prmuloclemcalc.udp | |
prmuloclemcalc.axb | |
prmuloclemcalc.pbrx | |
prmuloclemcalc.a | |
prmuloclemcalc.b | |
prmuloclemcalc.d | |
prmuloclemcalc.p | |
prmuloclemcalc.x |
Ref | Expression |
---|---|
prmuloclemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuloclemcalc.axb | . . . . . . 7 | |
2 | 1 | oveq2d 5869 | . . . . . 6 |
3 | prmuloclemcalc.ru | . . . . . . . . 9 | |
4 | ltrelnq 7327 | . . . . . . . . . 10 | |
5 | 4 | brel 4663 | . . . . . . . . 9 |
6 | 3, 5 | syl 14 | . . . . . . . 8 |
7 | 6 | simprd 113 | . . . . . . 7 |
8 | prmuloclemcalc.a | . . . . . . 7 | |
9 | prmuloclemcalc.x | . . . . . . 7 | |
10 | distrnqg 7349 | . . . . . . 7 | |
11 | 7, 8, 9, 10 | syl3anc 1233 | . . . . . 6 |
12 | 2, 11 | eqtr3d 2205 | . . . . 5 |
13 | prmuloclemcalc.b | . . . . . . 7 | |
14 | mulcomnqg 7345 | . . . . . . 7 | |
15 | 13, 7, 14 | syl2anc 409 | . . . . . 6 |
16 | prmuloclemcalc.udp | . . . . . . . . . 10 | |
17 | ltmnqi 7365 | . . . . . . . . . 10 | |
18 | 16, 13, 17 | syl2anc 409 | . . . . . . . . 9 |
19 | prmuloclemcalc.d | . . . . . . . . . 10 | |
20 | prmuloclemcalc.p | . . . . . . . . . 10 | |
21 | distrnqg 7349 | . . . . . . . . . 10 | |
22 | 13, 19, 20, 21 | syl3anc 1233 | . . . . . . . . 9 |
23 | 18, 22 | breqtrd 4015 | . . . . . . . 8 |
24 | mulcomnqg 7345 | . . . . . . . . . . 11 | |
25 | 20, 13, 24 | syl2anc 409 | . . . . . . . . . 10 |
26 | prmuloclemcalc.pbrx | . . . . . . . . . 10 | |
27 | 25, 26 | eqbrtrrd 4013 | . . . . . . . . 9 |
28 | mulclnq 7338 | . . . . . . . . . 10 | |
29 | 13, 19, 28 | syl2anc 409 | . . . . . . . . 9 |
30 | ltanqi 7364 | . . . . . . . . 9 | |
31 | 27, 29, 30 | syl2anc 409 | . . . . . . . 8 |
32 | ltsonq 7360 | . . . . . . . . 9 | |
33 | 32, 4 | sotri 5006 | . . . . . . . 8 |
34 | 23, 31, 33 | syl2anc 409 | . . . . . . 7 |
35 | ltmnqi 7365 | . . . . . . . . . 10 | |
36 | 3, 9, 35 | syl2anc 409 | . . . . . . . . 9 |
37 | 6 | simpld 111 | . . . . . . . . . 10 |
38 | mulcomnqg 7345 | . . . . . . . . . 10 | |
39 | 9, 37, 38 | syl2anc 409 | . . . . . . . . 9 |
40 | mulcomnqg 7345 | . . . . . . . . . 10 | |
41 | 9, 7, 40 | syl2anc 409 | . . . . . . . . 9 |
42 | 36, 39, 41 | 3brtr3d 4020 | . . . . . . . 8 |
43 | ltanqi 7364 | . . . . . . . 8 | |
44 | 42, 29, 43 | syl2anc 409 | . . . . . . 7 |
45 | 32, 4 | sotri 5006 | . . . . . . 7 |
46 | 34, 44, 45 | syl2anc 409 | . . . . . 6 |
47 | 15, 46 | eqbrtrrd 4013 | . . . . 5 |
48 | 12, 47 | eqbrtrrd 4013 | . . . 4 |
49 | mulclnq 7338 | . . . . . 6 | |
50 | 7, 8, 49 | syl2anc 409 | . . . . 5 |
51 | mulclnq 7338 | . . . . . 6 | |
52 | 7, 9, 51 | syl2anc 409 | . . . . 5 |
53 | addcomnqg 7343 | . . . . 5 | |
54 | 50, 52, 53 | syl2anc 409 | . . . 4 |
55 | addcomnqg 7343 | . . . . 5 | |
56 | 29, 52, 55 | syl2anc 409 | . . . 4 |
57 | 48, 54, 56 | 3brtr3d 4020 | . . 3 |
58 | ltanqg 7362 | . . . 4 | |
59 | 50, 29, 52, 58 | syl3anc 1233 | . . 3 |
60 | 57, 59 | mpbird 166 | . 2 |
61 | mulcomnqg 7345 | . . 3 | |
62 | 13, 19, 61 | syl2anc 409 | . 2 |
63 | 60, 62 | breqtrd 4015 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cnq 7242 cplq 7244 cmq 7245 cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-ltnqqs 7315 |
This theorem is referenced by: prmuloc 7528 |
Copyright terms: Public domain | W3C validator |