Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmuloclemcalc | Unicode version |
Description: Calculations for prmuloc 7507. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
prmuloclemcalc.ru | |
prmuloclemcalc.udp | |
prmuloclemcalc.axb | |
prmuloclemcalc.pbrx | |
prmuloclemcalc.a | |
prmuloclemcalc.b | |
prmuloclemcalc.d | |
prmuloclemcalc.p | |
prmuloclemcalc.x |
Ref | Expression |
---|---|
prmuloclemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuloclemcalc.axb | . . . . . . 7 | |
2 | 1 | oveq2d 5858 | . . . . . 6 |
3 | prmuloclemcalc.ru | . . . . . . . . 9 | |
4 | ltrelnq 7306 | . . . . . . . . . 10 | |
5 | 4 | brel 4656 | . . . . . . . . 9 |
6 | 3, 5 | syl 14 | . . . . . . . 8 |
7 | 6 | simprd 113 | . . . . . . 7 |
8 | prmuloclemcalc.a | . . . . . . 7 | |
9 | prmuloclemcalc.x | . . . . . . 7 | |
10 | distrnqg 7328 | . . . . . . 7 | |
11 | 7, 8, 9, 10 | syl3anc 1228 | . . . . . 6 |
12 | 2, 11 | eqtr3d 2200 | . . . . 5 |
13 | prmuloclemcalc.b | . . . . . . 7 | |
14 | mulcomnqg 7324 | . . . . . . 7 | |
15 | 13, 7, 14 | syl2anc 409 | . . . . . 6 |
16 | prmuloclemcalc.udp | . . . . . . . . . 10 | |
17 | ltmnqi 7344 | . . . . . . . . . 10 | |
18 | 16, 13, 17 | syl2anc 409 | . . . . . . . . 9 |
19 | prmuloclemcalc.d | . . . . . . . . . 10 | |
20 | prmuloclemcalc.p | . . . . . . . . . 10 | |
21 | distrnqg 7328 | . . . . . . . . . 10 | |
22 | 13, 19, 20, 21 | syl3anc 1228 | . . . . . . . . 9 |
23 | 18, 22 | breqtrd 4008 | . . . . . . . 8 |
24 | mulcomnqg 7324 | . . . . . . . . . . 11 | |
25 | 20, 13, 24 | syl2anc 409 | . . . . . . . . . 10 |
26 | prmuloclemcalc.pbrx | . . . . . . . . . 10 | |
27 | 25, 26 | eqbrtrrd 4006 | . . . . . . . . 9 |
28 | mulclnq 7317 | . . . . . . . . . 10 | |
29 | 13, 19, 28 | syl2anc 409 | . . . . . . . . 9 |
30 | ltanqi 7343 | . . . . . . . . 9 | |
31 | 27, 29, 30 | syl2anc 409 | . . . . . . . 8 |
32 | ltsonq 7339 | . . . . . . . . 9 | |
33 | 32, 4 | sotri 4999 | . . . . . . . 8 |
34 | 23, 31, 33 | syl2anc 409 | . . . . . . 7 |
35 | ltmnqi 7344 | . . . . . . . . . 10 | |
36 | 3, 9, 35 | syl2anc 409 | . . . . . . . . 9 |
37 | 6 | simpld 111 | . . . . . . . . . 10 |
38 | mulcomnqg 7324 | . . . . . . . . . 10 | |
39 | 9, 37, 38 | syl2anc 409 | . . . . . . . . 9 |
40 | mulcomnqg 7324 | . . . . . . . . . 10 | |
41 | 9, 7, 40 | syl2anc 409 | . . . . . . . . 9 |
42 | 36, 39, 41 | 3brtr3d 4013 | . . . . . . . 8 |
43 | ltanqi 7343 | . . . . . . . 8 | |
44 | 42, 29, 43 | syl2anc 409 | . . . . . . 7 |
45 | 32, 4 | sotri 4999 | . . . . . . 7 |
46 | 34, 44, 45 | syl2anc 409 | . . . . . 6 |
47 | 15, 46 | eqbrtrrd 4006 | . . . . 5 |
48 | 12, 47 | eqbrtrrd 4006 | . . . 4 |
49 | mulclnq 7317 | . . . . . 6 | |
50 | 7, 8, 49 | syl2anc 409 | . . . . 5 |
51 | mulclnq 7317 | . . . . . 6 | |
52 | 7, 9, 51 | syl2anc 409 | . . . . 5 |
53 | addcomnqg 7322 | . . . . 5 | |
54 | 50, 52, 53 | syl2anc 409 | . . . 4 |
55 | addcomnqg 7322 | . . . . 5 | |
56 | 29, 52, 55 | syl2anc 409 | . . . 4 |
57 | 48, 54, 56 | 3brtr3d 4013 | . . 3 |
58 | ltanqg 7341 | . . . 4 | |
59 | 50, 29, 52, 58 | syl3anc 1228 | . . 3 |
60 | 57, 59 | mpbird 166 | . 2 |
61 | mulcomnqg 7324 | . . 3 | |
62 | 13, 19, 61 | syl2anc 409 | . 2 |
63 | 60, 62 | breqtrd 4008 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cnq 7221 cplq 7223 cmq 7224 cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-ltnqqs 7294 |
This theorem is referenced by: prmuloc 7507 |
Copyright terms: Public domain | W3C validator |