ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloclemcalc Unicode version

Theorem prmuloclemcalc 7527
Description: Calculations for prmuloc 7528. (Contributed by Jim Kingdon, 9-Dec-2019.)
Hypotheses
Ref Expression
prmuloclemcalc.ru  |-  ( ph  ->  R  <Q  U )
prmuloclemcalc.udp  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
prmuloclemcalc.axb  |-  ( ph  ->  ( A  +Q  X
)  =  B )
prmuloclemcalc.pbrx  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
prmuloclemcalc.a  |-  ( ph  ->  A  e.  Q. )
prmuloclemcalc.b  |-  ( ph  ->  B  e.  Q. )
prmuloclemcalc.d  |-  ( ph  ->  D  e.  Q. )
prmuloclemcalc.p  |-  ( ph  ->  P  e.  Q. )
prmuloclemcalc.x  |-  ( ph  ->  X  e.  Q. )
Assertion
Ref Expression
prmuloclemcalc  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )

Proof of Theorem prmuloclemcalc
StepHypRef Expression
1 prmuloclemcalc.axb . . . . . . 7  |-  ( ph  ->  ( A  +Q  X
)  =  B )
21oveq2d 5869 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( U  .Q  B ) )
3 prmuloclemcalc.ru . . . . . . . . 9  |-  ( ph  ->  R  <Q  U )
4 ltrelnq 7327 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4663 . . . . . . . . 9  |-  ( R 
<Q  U  ->  ( R  e.  Q.  /\  U  e.  Q. ) )
63, 5syl 14 . . . . . . . 8  |-  ( ph  ->  ( R  e.  Q.  /\  U  e.  Q. )
)
76simprd 113 . . . . . . 7  |-  ( ph  ->  U  e.  Q. )
8 prmuloclemcalc.a . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
9 prmuloclemcalc.x . . . . . . 7  |-  ( ph  ->  X  e.  Q. )
10 distrnqg 7349 . . . . . . 7  |-  ( ( U  e.  Q.  /\  A  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
117, 8, 9, 10syl3anc 1233 . . . . . 6  |-  ( ph  ->  ( U  .Q  ( A  +Q  X ) )  =  ( ( U  .Q  A )  +Q  ( U  .Q  X
) ) )
122, 11eqtr3d 2205 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  =  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) )
13 prmuloclemcalc.b . . . . . . 7  |-  ( ph  ->  B  e.  Q. )
14 mulcomnqg 7345 . . . . . . 7  |-  ( ( B  e.  Q.  /\  U  e.  Q. )  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
1513, 7, 14syl2anc 409 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  =  ( U  .Q  B ) )
16 prmuloclemcalc.udp . . . . . . . . . 10  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
17 ltmnqi 7365 . . . . . . . . . 10  |-  ( ( U  <Q  ( D  +Q  P )  /\  B  e.  Q. )  ->  ( B  .Q  U )  <Q 
( B  .Q  ( D  +Q  P ) ) )
1816, 13, 17syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( B  .Q  ( D  +Q  P
) ) )
19 prmuloclemcalc.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
20 prmuloclemcalc.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  Q. )
21 distrnqg 7349 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q.  /\  P  e.  Q. )  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) )
2213, 19, 20, 21syl3anc 1233 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  ( D  +Q  P ) )  =  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
2318, 22breqtrd 4015 . . . . . . . 8  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) ) )
24 mulcomnqg 7345 . . . . . . . . . . 11  |-  ( ( P  e.  Q.  /\  B  e.  Q. )  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
2520, 13, 24syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  =  ( B  .Q  P ) )
26 prmuloclemcalc.pbrx . . . . . . . . . 10  |-  ( ph  ->  ( P  .Q  B
)  <Q  ( R  .Q  X ) )
2725, 26eqbrtrrd 4013 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  P
)  <Q  ( R  .Q  X ) )
28 mulclnq 7338 . . . . . . . . . 10  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  e.  Q. )
2913, 19, 28syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( B  .Q  D
)  e.  Q. )
30 ltanqi 7364 . . . . . . . . 9  |-  ( ( ( B  .Q  P
)  <Q  ( R  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
3127, 29, 30syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )
32 ltsonq 7360 . . . . . . . . 9  |-  <Q  Or  Q.
3332, 4sotri 5006 . . . . . . . 8  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( B  .Q  P
) )  /\  (
( B  .Q  D
)  +Q  ( B  .Q  P ) ) 
<Q  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) )
3423, 31, 33syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) ) )
35 ltmnqi 7365 . . . . . . . . . 10  |-  ( ( R  <Q  U  /\  X  e.  Q. )  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
363, 9, 35syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  <Q  ( X  .Q  U ) )
376simpld 111 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Q. )
38 mulcomnqg 7345 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  R  e.  Q. )  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
399, 37, 38syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  R
)  =  ( R  .Q  X ) )
40 mulcomnqg 7345 . . . . . . . . . 10  |-  ( ( X  e.  Q.  /\  U  e.  Q. )  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
419, 7, 40syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( X  .Q  U
)  =  ( U  .Q  X ) )
4236, 39, 413brtr3d 4020 . . . . . . . 8  |-  ( ph  ->  ( R  .Q  X
)  <Q  ( U  .Q  X ) )
43 ltanqi 7364 . . . . . . . 8  |-  ( ( ( R  .Q  X
)  <Q  ( U  .Q  X )  /\  ( B  .Q  D )  e. 
Q. )  ->  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4442, 29, 43syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
4532, 4sotri 5006 . . . . . . 7  |-  ( ( ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( R  .Q  X
) )  /\  (
( B  .Q  D
)  +Q  ( R  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )  ->  ( B  .Q  U )  <Q  (
( B  .Q  D
)  +Q  ( U  .Q  X ) ) )
4634, 44, 45syl2anc 409 . . . . . 6  |-  ( ph  ->  ( B  .Q  U
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4715, 46eqbrtrrd 4013 . . . . 5  |-  ( ph  ->  ( U  .Q  B
)  <Q  ( ( B  .Q  D )  +Q  ( U  .Q  X
) ) )
4812, 47eqbrtrrd 4013 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) ) 
<Q  ( ( B  .Q  D )  +Q  ( U  .Q  X ) ) )
49 mulclnq 7338 . . . . . 6  |-  ( ( U  e.  Q.  /\  A  e.  Q. )  ->  ( U  .Q  A
)  e.  Q. )
507, 8, 49syl2anc 409 . . . . 5  |-  ( ph  ->  ( U  .Q  A
)  e.  Q. )
51 mulclnq 7338 . . . . . 6  |-  ( ( U  e.  Q.  /\  X  e.  Q. )  ->  ( U  .Q  X
)  e.  Q. )
527, 9, 51syl2anc 409 . . . . 5  |-  ( ph  ->  ( U  .Q  X
)  e.  Q. )
53 addcomnqg 7343 . . . . 5  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
5450, 52, 53syl2anc 409 . . . 4  |-  ( ph  ->  ( ( U  .Q  A )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( U  .Q  A
) ) )
55 addcomnqg 7343 . . . . 5  |-  ( ( ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5629, 52, 55syl2anc 409 . . . 4  |-  ( ph  ->  ( ( B  .Q  D )  +Q  ( U  .Q  X ) )  =  ( ( U  .Q  X )  +Q  ( B  .Q  D
) ) )
5748, 54, 563brtr3d 4020 . . 3  |-  ( ph  ->  ( ( U  .Q  X )  +Q  ( U  .Q  A ) ) 
<Q  ( ( U  .Q  X )  +Q  ( B  .Q  D ) ) )
58 ltanqg 7362 . . . 4  |-  ( ( ( U  .Q  A
)  e.  Q.  /\  ( B  .Q  D
)  e.  Q.  /\  ( U  .Q  X
)  e.  Q. )  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
5950, 29, 52, 58syl3anc 1233 . . 3  |-  ( ph  ->  ( ( U  .Q  A )  <Q  ( B  .Q  D )  <->  ( ( U  .Q  X )  +Q  ( U  .Q  A
) )  <Q  (
( U  .Q  X
)  +Q  ( B  .Q  D ) ) ) )
6057, 59mpbird 166 . 2  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( B  .Q  D ) )
61 mulcomnqg 7345 . . 3  |-  ( ( B  e.  Q.  /\  D  e.  Q. )  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6213, 19, 61syl2anc 409 . 2  |-  ( ph  ->  ( B  .Q  D
)  =  ( D  .Q  B ) )
6360, 62breqtrd 4015 1  |-  ( ph  ->  ( U  .Q  A
)  <Q  ( D  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   Q.cnq 7242    +Q cplq 7244    .Q cmq 7245    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-ltnqqs 7315
This theorem is referenced by:  prmuloc  7528
  Copyright terms: Public domain W3C validator