ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt Unicode version

Theorem addlocprlemeqgt 7616
Description: Lemma for addlocpr 7620. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeqgt  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )

Proof of Theorem addlocprlemeqgt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
2 addlocprlem.et . . 3  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
3 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
4 prop 7559 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
6 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
7 elprnqu 7566 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  U  e.  ( 2nd `  A ) )  ->  U  e.  Q. )
85, 6, 7syl2anc 411 . . . 4  |-  ( ph  ->  U  e.  Q. )
9 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7565 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
115, 9, 10syl2anc 411 . . . . 5  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
13 addclnq 7459 . . . . 5  |-  ( ( D  e.  Q.  /\  P  e.  Q. )  ->  ( D  +Q  P
)  e.  Q. )
1411, 12, 13syl2anc 411 . . . 4  |-  ( ph  ->  ( D  +Q  P
)  e.  Q. )
15 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
16 prop 7559 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
18 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
19 elprnqu 7566 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  T  e.  ( 2nd `  B ) )  ->  T  e.  Q. )
2017, 18, 19syl2anc 411 . . . 4  |-  ( ph  ->  T  e.  Q. )
21 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
22 elprnql 7565 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2317, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  E  e.  Q. )
24 addclnq 7459 . . . . 5  |-  ( ( E  e.  Q.  /\  P  e.  Q. )  ->  ( E  +Q  P
)  e.  Q. )
2523, 12, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( E  +Q  P
)  e.  Q. )
26 lt2addnq 7488 . . . 4  |-  ( ( ( U  e.  Q.  /\  ( D  +Q  P
)  e.  Q. )  /\  ( T  e.  Q.  /\  ( E  +Q  P
)  e.  Q. )
)  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  P )  +Q  ( E  +Q  P ) ) ) )
278, 14, 20, 25, 26syl22anc 1250 . . 3  |-  ( ph  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P ) )  ->  ( U  +Q  T )  <Q  (
( D  +Q  P
)  +Q  ( E  +Q  P ) ) ) )
281, 2, 27mp2and 433 . 2  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  P )  +Q  ( E  +Q  P
) ) )
29 addcomnqg 7465 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
31 addassnqg 7466 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
3231adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
33 addclnq 7459 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
3433adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  e.  Q. )
3511, 12, 23, 30, 32, 12, 34caov4d 6112 . 2  |-  ( ph  ->  ( ( D  +Q  P )  +Q  ( E  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3628, 35breqtrd 4060 1  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  addlocprlemeq  7617  addlocprlemgt  7618
  Copyright terms: Public domain W3C validator