ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt Unicode version

Theorem addlocprlemeqgt 7647
Description: Lemma for addlocpr 7651. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeqgt  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )

Proof of Theorem addlocprlemeqgt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
2 addlocprlem.et . . 3  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
3 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
4 prop 7590 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
6 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
7 elprnqu 7597 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  U  e.  ( 2nd `  A ) )  ->  U  e.  Q. )
85, 6, 7syl2anc 411 . . . 4  |-  ( ph  ->  U  e.  Q. )
9 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7596 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
115, 9, 10syl2anc 411 . . . . 5  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
13 addclnq 7490 . . . . 5  |-  ( ( D  e.  Q.  /\  P  e.  Q. )  ->  ( D  +Q  P
)  e.  Q. )
1411, 12, 13syl2anc 411 . . . 4  |-  ( ph  ->  ( D  +Q  P
)  e.  Q. )
15 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
16 prop 7590 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
18 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
19 elprnqu 7597 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  T  e.  ( 2nd `  B ) )  ->  T  e.  Q. )
2017, 18, 19syl2anc 411 . . . 4  |-  ( ph  ->  T  e.  Q. )
21 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
22 elprnql 7596 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2317, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  E  e.  Q. )
24 addclnq 7490 . . . . 5  |-  ( ( E  e.  Q.  /\  P  e.  Q. )  ->  ( E  +Q  P
)  e.  Q. )
2523, 12, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( E  +Q  P
)  e.  Q. )
26 lt2addnq 7519 . . . 4  |-  ( ( ( U  e.  Q.  /\  ( D  +Q  P
)  e.  Q. )  /\  ( T  e.  Q.  /\  ( E  +Q  P
)  e.  Q. )
)  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  P )  +Q  ( E  +Q  P ) ) ) )
278, 14, 20, 25, 26syl22anc 1251 . . 3  |-  ( ph  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P ) )  ->  ( U  +Q  T )  <Q  (
( D  +Q  P
)  +Q  ( E  +Q  P ) ) ) )
281, 2, 27mp2and 433 . 2  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  P )  +Q  ( E  +Q  P
) ) )
29 addcomnqg 7496 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
31 addassnqg 7497 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
3231adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
33 addclnq 7490 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
3433adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  e.  Q. )
3511, 12, 23, 30, 32, 12, 34caov4d 6133 . 2  |-  ( ph  ->  ( ( D  +Q  P )  +Q  ( E  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3628, 35breqtrd 4071 1  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   1stc1st 6226   2ndc2nd 6227   Q.cnq 7395    +Q cplq 7397    <Q cltq 7400   P.cnp 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-ltnqqs 7468  df-inp 7581
This theorem is referenced by:  addlocprlemeq  7648  addlocprlemgt  7649
  Copyright terms: Public domain W3C validator