ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt Unicode version

Theorem addlocprlemeqgt 7531
Description: Lemma for addlocpr 7535. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeqgt  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )

Proof of Theorem addlocprlemeqgt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
2 addlocprlem.et . . 3  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
3 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
4 prop 7474 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
6 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
7 elprnqu 7481 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  U  e.  ( 2nd `  A ) )  ->  U  e.  Q. )
85, 6, 7syl2anc 411 . . . 4  |-  ( ph  ->  U  e.  Q. )
9 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7480 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
115, 9, 10syl2anc 411 . . . . 5  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
13 addclnq 7374 . . . . 5  |-  ( ( D  e.  Q.  /\  P  e.  Q. )  ->  ( D  +Q  P
)  e.  Q. )
1411, 12, 13syl2anc 411 . . . 4  |-  ( ph  ->  ( D  +Q  P
)  e.  Q. )
15 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
16 prop 7474 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
18 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
19 elprnqu 7481 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  T  e.  ( 2nd `  B ) )  ->  T  e.  Q. )
2017, 18, 19syl2anc 411 . . . 4  |-  ( ph  ->  T  e.  Q. )
21 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
22 elprnql 7480 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2317, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  E  e.  Q. )
24 addclnq 7374 . . . . 5  |-  ( ( E  e.  Q.  /\  P  e.  Q. )  ->  ( E  +Q  P
)  e.  Q. )
2523, 12, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( E  +Q  P
)  e.  Q. )
26 lt2addnq 7403 . . . 4  |-  ( ( ( U  e.  Q.  /\  ( D  +Q  P
)  e.  Q. )  /\  ( T  e.  Q.  /\  ( E  +Q  P
)  e.  Q. )
)  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  P )  +Q  ( E  +Q  P ) ) ) )
278, 14, 20, 25, 26syl22anc 1239 . . 3  |-  ( ph  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P ) )  ->  ( U  +Q  T )  <Q  (
( D  +Q  P
)  +Q  ( E  +Q  P ) ) ) )
281, 2, 27mp2and 433 . 2  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  P )  +Q  ( E  +Q  P
) ) )
29 addcomnqg 7380 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
31 addassnqg 7381 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
3231adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
33 addclnq 7374 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
3433adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  e.  Q. )
3511, 12, 23, 30, 32, 12, 34caov4d 6059 . 2  |-  ( ph  ->  ( ( D  +Q  P )  +Q  ( E  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3628, 35breqtrd 4030 1  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3596   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   1stc1st 6139   2ndc2nd 6140   Q.cnq 7279    +Q cplq 7281    <Q cltq 7284   P.cnp 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-ltnqqs 7352  df-inp 7465
This theorem is referenced by:  addlocprlemeq  7532  addlocprlemgt  7533
  Copyright terms: Public domain W3C validator