ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt Unicode version

Theorem addlocprlemeqgt 7506
Description: Lemma for addlocpr 7510. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeqgt  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )

Proof of Theorem addlocprlemeqgt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
2 addlocprlem.et . . 3  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
3 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
4 prop 7449 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
6 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
7 elprnqu 7456 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  U  e.  ( 2nd `  A ) )  ->  U  e.  Q. )
85, 6, 7syl2anc 411 . . . 4  |-  ( ph  ->  U  e.  Q. )
9 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7455 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
115, 9, 10syl2anc 411 . . . . 5  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
13 addclnq 7349 . . . . 5  |-  ( ( D  e.  Q.  /\  P  e.  Q. )  ->  ( D  +Q  P
)  e.  Q. )
1411, 12, 13syl2anc 411 . . . 4  |-  ( ph  ->  ( D  +Q  P
)  e.  Q. )
15 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
16 prop 7449 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
18 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
19 elprnqu 7456 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  T  e.  ( 2nd `  B ) )  ->  T  e.  Q. )
2017, 18, 19syl2anc 411 . . . 4  |-  ( ph  ->  T  e.  Q. )
21 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
22 elprnql 7455 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2317, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  E  e.  Q. )
24 addclnq 7349 . . . . 5  |-  ( ( E  e.  Q.  /\  P  e.  Q. )  ->  ( E  +Q  P
)  e.  Q. )
2523, 12, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( E  +Q  P
)  e.  Q. )
26 lt2addnq 7378 . . . 4  |-  ( ( ( U  e.  Q.  /\  ( D  +Q  P
)  e.  Q. )  /\  ( T  e.  Q.  /\  ( E  +Q  P
)  e.  Q. )
)  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  P )  +Q  ( E  +Q  P ) ) ) )
278, 14, 20, 25, 26syl22anc 1239 . . 3  |-  ( ph  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P ) )  ->  ( U  +Q  T )  <Q  (
( D  +Q  P
)  +Q  ( E  +Q  P ) ) ) )
281, 2, 27mp2and 433 . 2  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  P )  +Q  ( E  +Q  P
) ) )
29 addcomnqg 7355 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
31 addassnqg 7356 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
3231adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
33 addclnq 7349 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
3433adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  e.  Q. )
3511, 12, 23, 30, 32, 12, 34caov4d 6049 . 2  |-  ( ph  ->  ( ( D  +Q  P )  +Q  ( E  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3628, 35breqtrd 4024 1  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   <.cop 3592   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   1stc1st 6129   2ndc2nd 6130   Q.cnq 7254    +Q cplq 7256    <Q cltq 7259   P.cnp 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-ltnqqs 7327  df-inp 7440
This theorem is referenced by:  addlocprlemeq  7507  addlocprlemgt  7508
  Copyright terms: Public domain W3C validator