ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt Unicode version

Theorem addlocprlemeqgt 7464
Description: Lemma for addlocpr 7468. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeqgt  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )

Proof of Theorem addlocprlemeqgt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
2 addlocprlem.et . . 3  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
3 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
4 prop 7407 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
6 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
7 elprnqu 7414 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  U  e.  ( 2nd `  A ) )  ->  U  e.  Q. )
85, 6, 7syl2anc 409 . . . 4  |-  ( ph  ->  U  e.  Q. )
9 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7413 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
115, 9, 10syl2anc 409 . . . . 5  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
13 addclnq 7307 . . . . 5  |-  ( ( D  e.  Q.  /\  P  e.  Q. )  ->  ( D  +Q  P
)  e.  Q. )
1411, 12, 13syl2anc 409 . . . 4  |-  ( ph  ->  ( D  +Q  P
)  e.  Q. )
15 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
16 prop 7407 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
18 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
19 elprnqu 7414 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  T  e.  ( 2nd `  B ) )  ->  T  e.  Q. )
2017, 18, 19syl2anc 409 . . . 4  |-  ( ph  ->  T  e.  Q. )
21 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
22 elprnql 7413 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2317, 21, 22syl2anc 409 . . . . 5  |-  ( ph  ->  E  e.  Q. )
24 addclnq 7307 . . . . 5  |-  ( ( E  e.  Q.  /\  P  e.  Q. )  ->  ( E  +Q  P
)  e.  Q. )
2523, 12, 24syl2anc 409 . . . 4  |-  ( ph  ->  ( E  +Q  P
)  e.  Q. )
26 lt2addnq 7336 . . . 4  |-  ( ( ( U  e.  Q.  /\  ( D  +Q  P
)  e.  Q. )  /\  ( T  e.  Q.  /\  ( E  +Q  P
)  e.  Q. )
)  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  P )  +Q  ( E  +Q  P ) ) ) )
278, 14, 20, 25, 26syl22anc 1228 . . 3  |-  ( ph  ->  ( ( U  <Q  ( D  +Q  P )  /\  T  <Q  ( E  +Q  P ) )  ->  ( U  +Q  T )  <Q  (
( D  +Q  P
)  +Q  ( E  +Q  P ) ) ) )
281, 2, 27mp2and 430 . 2  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  P )  +Q  ( E  +Q  P
) ) )
29 addcomnqg 7313 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
31 addassnqg 7314 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
3231adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
33 addclnq 7307 . . . 4  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
3433adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  e.  Q. )
3511, 12, 23, 30, 32, 12, 34caov4d 6017 . 2  |-  ( ph  ->  ( ( D  +Q  P )  +Q  ( E  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3628, 35breqtrd 4002 1  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   <.cop 3573   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   1stc1st 6098   2ndc2nd 6099   Q.cnq 7212    +Q cplq 7214    <Q cltq 7217   P.cnp 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-ltnqqs 7285  df-inp 7398
This theorem is referenced by:  addlocprlemeq  7465  addlocprlemgt  7466
  Copyright terms: Public domain W3C validator