ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss Unicode version

Theorem seq3clss 10233
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3clss.ft  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
seq3clss.fs  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seq3clss.scl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3clss.t  |-  ( ph  ->  S  C_  T )
seq3clss.tcl  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
Assertion
Ref Expression
seq3clss  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, T, y    ph, x, y

Proof of Theorem seq3clss
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9805 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5414 . . . . 5  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  M
) )
54eleq1d 2206 . . . 4  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) )
65imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) ) )
7 fveq2 5414 . . . . 5  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  k
) )
87eleq1d 2206 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) )
98imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) ) )
10 fveq2 5414 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  (
k  +  1 ) ) )
1110eleq1d 2206 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
1211imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
13 fveq2 5414 . . . . 5  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eleq1d 2206 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) )
1514imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) ) )
16 eluzel2 9324 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
18 seq3clss.ft . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
19 seq3clss.tcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
2017, 18, 19seq3-1 10226 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
21 fveq2 5414 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2221eleq1d 2206 . . . . . 6  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
23 seq3clss.fs . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
2423ralrimiva 2503 . . . . . 6  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
25 eluzfz1 9804 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
261, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2722, 24, 26rspcdva 2789 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  S )
2820, 27eqeltrd 2214 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S )
2928a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S ) )
30 elfzouz 9921 . . . . . . . . 9  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
3130ad2antlr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  k  e.  (
ZZ>= `  M ) )
3218adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
3332adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  T
)
3419adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3534adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3631, 33, 35seq3p1 10228 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
37 seq3clss.scl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3837adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3938adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
40 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )
41 fveq2 5414 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4241eleq1d 2206 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
4324ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
44 fzofzp1 9997 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
4544ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( k  +  1 )  e.  ( M ... N ) )
4642, 43, 45rspcdva 2789 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( F `  ( k  +  1 ) )  e.  S
)
4739, 40, 46caovcld 5917 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  e.  S )
4836, 47eqeltrd 2214 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S )
4948ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  e.  S  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
5049expcom 115 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  e.  S  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
5150a2d 26 . . 3  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S ) ) )
526, 9, 12, 15, 29, 51fzind2 10009 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  e.  S ) )
533, 52mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414    C_ wss 3066   ` cfv 5118  (class class class)co 5767   1c1 7614    + caddc 7616   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783  ..^cfzo 9912    seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212
This theorem is referenced by:  fsumcl2lem  11160
  Copyright terms: Public domain W3C validator