ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss Unicode version

Theorem seq3clss 9875
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3clss.ft  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
seq3clss.fs  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seq3clss.scl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3clss.t  |-  ( ph  ->  S  C_  T )
seq3clss.tcl  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
Assertion
Ref Expression
seq3clss  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, T, y    ph, x, y

Proof of Theorem seq3clss
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9436 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5299 . . . . 5  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  M
) )
54eleq1d 2156 . . . 4  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) )
65imbi2d 228 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) ) )
7 fveq2 5299 . . . . 5  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  k
) )
87eleq1d 2156 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) )
98imbi2d 228 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) ) )
10 fveq2 5299 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  (
k  +  1 ) ) )
1110eleq1d 2156 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
1211imbi2d 228 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
13 fveq2 5299 . . . . 5  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eleq1d 2156 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) )
1514imbi2d 228 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) ) )
16 eluzel2 9014 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
18 seq3clss.ft . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
19 seq3clss.tcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
2017, 18, 19seq3-1 9865 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
21 fveq2 5299 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2221eleq1d 2156 . . . . . 6  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
23 seq3clss.fs . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
2423ralrimiva 2446 . . . . . 6  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
25 eluzfz1 9435 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
261, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2722, 24, 26rspcdva 2727 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  S )
2820, 27eqeltrd 2164 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S )
2928a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S ) )
30 elfzouz 9550 . . . . . . . . 9  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
3130ad2antlr 473 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  k  e.  (
ZZ>= `  M ) )
3218adantlr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
3332adantlr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  T
)
3419adantlr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3534adantlr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3631, 33, 35seq3p1 9872 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
37 seq3clss.scl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3837adantlr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3938adantlr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
40 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )
41 fveq2 5299 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4241eleq1d 2156 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
4324ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
44 fzofzp1 9626 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
4544ad2antlr 473 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( k  +  1 )  e.  ( M ... N ) )
4642, 43, 45rspcdva 2727 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( F `  ( k  +  1 ) )  e.  S
)
4739, 40, 46caovcld 5790 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  e.  S )
4836, 47eqeltrd 2164 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S )
4948ex 113 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  e.  S  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
5049expcom 114 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  e.  S  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
5150a2d 26 . . 3  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S ) ) )
526, 9, 12, 15, 29, 51fzind2 9638 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  e.  S ) )
533, 52mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359    C_ wss 2999   ` cfv 5010  (class class class)co 5644   1c1 7341    + caddc 7343   ZZcz 8740   ZZ>=cuz 9009   ...cfz 9414  ..^cfzo 9541    seqcseq 9840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-addass 7437  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-ltadd 7451
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-iord 4191  df-on 4193  df-ilim 4194  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-frec 6148  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-inn 8413  df-n0 8664  df-z 8741  df-uz 9010  df-fz 9415  df-fzo 9542  df-iseq 9841  df-seq3 9842
This theorem is referenced by:  fsumcl2lem  10779
  Copyright terms: Public domain W3C validator