Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3clss | Unicode version |
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.) |
Ref | Expression |
---|---|
seq3clss.n | |
seq3clss.ft | |
seq3clss.fs | |
seq3clss.scl | |
seq3clss.t | |
seq3clss.tcl |
Ref | Expression |
---|---|
seq3clss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3clss.n | . . 3 | |
2 | eluzfz2 9988 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fveq2 5496 | . . . . 5 | |
5 | 4 | eleq1d 2239 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | fveq2 5496 | . . . . 5 | |
8 | 7 | eleq1d 2239 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | fveq2 5496 | . . . . 5 | |
11 | 10 | eleq1d 2239 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | fveq2 5496 | . . . . 5 | |
14 | 13 | eleq1d 2239 | . . . 4 |
15 | 14 | imbi2d 229 | . . 3 |
16 | eluzel2 9492 | . . . . . . 7 | |
17 | 1, 16 | syl 14 | . . . . . 6 |
18 | seq3clss.ft | . . . . . 6 | |
19 | seq3clss.tcl | . . . . . 6 | |
20 | 17, 18, 19 | seq3-1 10416 | . . . . 5 |
21 | fveq2 5496 | . . . . . . 7 | |
22 | 21 | eleq1d 2239 | . . . . . 6 |
23 | seq3clss.fs | . . . . . . 7 | |
24 | 23 | ralrimiva 2543 | . . . . . 6 |
25 | eluzfz1 9987 | . . . . . . 7 | |
26 | 1, 25 | syl 14 | . . . . . 6 |
27 | 22, 24, 26 | rspcdva 2839 | . . . . 5 |
28 | 20, 27 | eqeltrd 2247 | . . . 4 |
29 | 28 | a1i 9 | . . 3 |
30 | elfzouz 10107 | . . . . . . . . 9 ..^ | |
31 | 30 | ad2antlr 486 | . . . . . . . 8 ..^ |
32 | 18 | adantlr 474 | . . . . . . . . 9 ..^ |
33 | 32 | adantlr 474 | . . . . . . . 8 ..^ |
34 | 19 | adantlr 474 | . . . . . . . . 9 ..^ |
35 | 34 | adantlr 474 | . . . . . . . 8 ..^ |
36 | 31, 33, 35 | seq3p1 10418 | . . . . . . 7 ..^ |
37 | seq3clss.scl | . . . . . . . . . 10 | |
38 | 37 | adantlr 474 | . . . . . . . . 9 ..^ |
39 | 38 | adantlr 474 | . . . . . . . 8 ..^ |
40 | simpr 109 | . . . . . . . 8 ..^ | |
41 | fveq2 5496 | . . . . . . . . . 10 | |
42 | 41 | eleq1d 2239 | . . . . . . . . 9 |
43 | 24 | ad2antrr 485 | . . . . . . . . 9 ..^ |
44 | fzofzp1 10183 | . . . . . . . . . 10 ..^ | |
45 | 44 | ad2antlr 486 | . . . . . . . . 9 ..^ |
46 | 42, 43, 45 | rspcdva 2839 | . . . . . . . 8 ..^ |
47 | 39, 40, 46 | caovcld 6006 | . . . . . . 7 ..^ |
48 | 36, 47 | eqeltrd 2247 | . . . . . 6 ..^ |
49 | 48 | ex 114 | . . . . 5 ..^ |
50 | 49 | expcom 115 | . . . 4 ..^ |
51 | 50 | a2d 26 | . . 3 ..^ |
52 | 6, 9, 12, 15, 29, 51 | fzind2 10195 | . 2 |
53 | 3, 52 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wss 3121 cfv 5198 (class class class)co 5853 c1 7775 caddc 7777 cz 9212 cuz 9487 cfz 9965 ..^cfzo 10098 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 df-seqfrec 10402 |
This theorem is referenced by: fsumcl2lem 11361 |
Copyright terms: Public domain | W3C validator |