ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss Unicode version

Theorem seq3clss 10563
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3clss.ft  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
seq3clss.fs  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seq3clss.scl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3clss.t  |-  ( ph  ->  S  C_  T )
seq3clss.tcl  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
Assertion
Ref Expression
seq3clss  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, T, y    ph, x, y

Proof of Theorem seq3clss
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10107 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5558 . . . . 5  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  M
) )
54eleq1d 2265 . . . 4  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) )
65imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) ) )
7 fveq2 5558 . . . . 5  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  k
) )
87eleq1d 2265 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) )
98imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) ) )
10 fveq2 5558 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  (
k  +  1 ) ) )
1110eleq1d 2265 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
1211imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
13 fveq2 5558 . . . . 5  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eleq1d 2265 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) )
1514imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) ) )
16 eluzel2 9606 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
18 seq3clss.ft . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
19 seq3clss.tcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
2017, 18, 19seq3-1 10554 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
21 fveq2 5558 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2221eleq1d 2265 . . . . . 6  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
23 seq3clss.fs . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
2423ralrimiva 2570 . . . . . 6  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
25 eluzfz1 10106 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
261, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2722, 24, 26rspcdva 2873 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  S )
2820, 27eqeltrd 2273 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S )
2928a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S ) )
30 elfzouz 10226 . . . . . . . . 9  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
3130ad2antlr 489 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  k  e.  (
ZZ>= `  M ) )
3218adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
3332adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  T
)
3419adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3534adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3631, 33, 35seq3p1 10557 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
37 seq3clss.scl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3837adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3938adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
40 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )
41 fveq2 5558 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4241eleq1d 2265 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
4324ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
44 fzofzp1 10303 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
4544ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( k  +  1 )  e.  ( M ... N ) )
4642, 43, 45rspcdva 2873 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( F `  ( k  +  1 ) )  e.  S
)
4739, 40, 46caovcld 6077 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  e.  S )
4836, 47eqeltrd 2273 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S )
4948ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  e.  S  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
5049expcom 116 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  e.  S  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
5150a2d 26 . . 3  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S ) ) )
526, 9, 12, 15, 29, 51fzind2 10315 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  e.  S ) )
533, 52mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083  ..^cfzo 10217    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  seqclg  10564  seqfeq4g  10623  fsumcl2lem  11563  gsumwsubmcl  13128  gsumfzcl  13131
  Copyright terms: Public domain W3C validator