ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss Unicode version

Theorem seq3clss 10240
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3clss.ft  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
seq3clss.fs  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seq3clss.scl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3clss.t  |-  ( ph  ->  S  C_  T )
seq3clss.tcl  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
Assertion
Ref Expression
seq3clss  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, T, y    ph, x, y

Proof of Theorem seq3clss
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9812 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5421 . . . . 5  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  M
) )
54eleq1d 2208 . . . 4  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) )
65imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  e.  S ) ) )
7 fveq2 5421 . . . . 5  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  k
) )
87eleq1d 2208 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) )
98imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  e.  S ) ) )
10 fveq2 5421 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  (
k  +  1 ) ) )
1110eleq1d 2208 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
1211imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
13 fveq2 5421 . . . . 5  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ) `  w
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eleq1d 2208 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  e.  S  <->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) )
1514imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  e.  S )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  e.  S ) ) )
16 eluzel2 9331 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
18 seq3clss.ft . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
19 seq3clss.tcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
2017, 18, 19seq3-1 10233 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
21 fveq2 5421 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2221eleq1d 2208 . . . . . 6  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
23 seq3clss.fs . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
2423ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
25 eluzfz1 9811 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
261, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2722, 24, 26rspcdva 2794 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  S )
2820, 27eqeltrd 2216 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S )
2928a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  e.  S ) )
30 elfzouz 9928 . . . . . . . . 9  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
3130ad2antlr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  k  e.  (
ZZ>= `  M ) )
3218adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
3332adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  T
)
3419adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3534adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
3631, 33, 35seq3p1 10235 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
37 seq3clss.scl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3837adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3938adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
40 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )
41 fveq2 5421 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4241eleq1d 2208 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
4324ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
44 fzofzp1 10004 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
4544ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( k  +  1 )  e.  ( M ... N ) )
4642, 43, 45rspcdva 2794 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( F `  ( k  +  1 ) )  e.  S
)
4739, 40, 46caovcld 5924 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  e.  S )
4836, 47eqeltrd 2216 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  e.  S )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S )
4948ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  e.  S  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) )
5049expcom 115 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  e.  S  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  e.  S ) ) )
5150a2d 26 . . 3  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  e.  S )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  e.  S ) ) )
526, 9, 12, 15, 29, 51fzind2 10016 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  e.  S ) )
533, 52mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416    C_ wss 3071   ` cfv 5123  (class class class)co 5774   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790  ..^cfzo 9919    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  fsumcl2lem  11167
  Copyright terms: Public domain W3C validator