ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell Unicode version

Theorem caucvgprprlemell 7517
Description: Lemma for caucvgprpr 7544. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemell  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
Distinct variable groups:    F, b    F, l, r    u, F, r    X, b, p    X, l, r, p    u, X, p    X, q, b    q,
l, r    u, q
Allowed substitution hints:    F( q, p)    L( u, r, q, p, b, l)

Proof of Theorem caucvgprprlemell
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oveq1 5789 . . . . . . . 8  |-  ( l  =  X  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
21breq2d 3949 . . . . . . 7  |-  ( l  =  X  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
32abbidv 2258 . . . . . 6  |-  ( l  =  X  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
41breq1d 3947 . . . . . . 7  |-  ( l  =  X  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
54abbidv 2258 . . . . . 6  |-  ( l  =  X  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
63, 5opeq12d 3721 . . . . 5  |-  ( l  =  X  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
76breq1d 3947 . . . 4  |-  ( l  =  X  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
87rexbidv 2439 . . 3  |-  ( l  =  X  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
9 caucvgprprlemell.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
109fveq2i 5432 . . . 4  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
11 nqex 7195 . . . . . 6  |-  Q.  e.  _V
1211rabex 4080 . . . . 5  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
1311rabex 4080 . . . . 5  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
1412, 13op1st 6052 . . . 4  |-  ( 1st `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
1510, 14eqtri 2161 . . 3  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
168, 15elrab2 2847 . 2  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
17 opeq1 3713 . . . . . . . . . . . 12  |-  ( r  =  a  ->  <. r ,  1o >.  =  <. a ,  1o >. )
1817eceq1d 6473 . . . . . . . . . . 11  |-  ( r  =  a  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1918fveq2d 5433 . . . . . . . . . 10  |-  ( r  =  a  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
2019oveq2d 5798 . . . . . . . . 9  |-  ( r  =  a  ->  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  =  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
2120breq2d 3949 . . . . . . . 8  |-  ( r  =  a  ->  (
p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) ) )
2221abbidv 2258 . . . . . . 7  |-  ( r  =  a  ->  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } )
2320breq1d 3947 . . . . . . . 8  |-  ( r  =  a  ->  (
( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q ) )
2423abbidv 2258 . . . . . . 7  |-  ( r  =  a  ->  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } )
2522, 24opeq12d 3721 . . . . . 6  |-  ( r  =  a  ->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } >. )
26 fveq2 5429 . . . . . 6  |-  ( r  =  a  ->  ( F `  r )  =  ( F `  a ) )
2725, 26breq12d 3950 . . . . 5  |-  ( r  =  a  ->  ( <. { p  |  p 
<Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )
) )
2827cbvrexv 2658 . . . 4  |-  ( E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. a  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )
)
29 opeq1 3713 . . . . . . . . . . . 12  |-  ( a  =  b  ->  <. a ,  1o >.  =  <. b ,  1o >. )
3029eceq1d 6473 . . . . . . . . . . 11  |-  ( a  =  b  ->  [ <. a ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
3130fveq2d 5433 . . . . . . . . . 10  |-  ( a  =  b  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
3231oveq2d 5798 . . . . . . . . 9  |-  ( a  =  b  ->  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  =  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
3332breq2d 3949 . . . . . . . 8  |-  ( a  =  b  ->  (
p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) ) )
3433abbidv 2258 . . . . . . 7  |-  ( a  =  b  ->  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } )
3532breq1d 3947 . . . . . . . 8  |-  ( a  =  b  ->  (
( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q ) )
3635abbidv 2258 . . . . . . 7  |-  ( a  =  b  ->  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } )
3734, 36opeq12d 3721 . . . . . 6  |-  ( a  =  b  ->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } >. )
38 fveq2 5429 . . . . . 6  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
3937, 38breq12d 3950 . . . . 5  |-  ( a  =  b  ->  ( <. { p  |  p 
<Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
4039cbvrexv 2658 . . . 4  |-  ( E. a  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  <->  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)
4128, 40bitri 183 . . 3  |-  ( E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)
4241anbi2i 453 . 2  |-  ( ( X  e.  Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
4316, 42bitri 183 1  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   {crab 2421   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   1oc1o 6314   [cec 6435   N.cnpi 7104    ~Q ceq 7111   Q.cnq 7112    +Q cplq 7114   *Qcrq 7116    <Q cltq 7117    +P. cpp 7125    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-1st 6046  df-ec 6439  df-qs 6443  df-ni 7136  df-nqqs 7180
This theorem is referenced by:  caucvgprprlemopl  7529  caucvgprprlemlol  7530  caucvgprprlemdisj  7534  caucvgprprlemloc  7535
  Copyright terms: Public domain W3C validator