| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemell | Unicode version | ||
| Description: Lemma for caucvgprpr 7824. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemell |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5950 |
. . . . . . . 8
| |
| 2 | 1 | breq2d 4055 |
. . . . . . 7
|
| 3 | 2 | abbidv 2322 |
. . . . . 6
|
| 4 | 1 | breq1d 4053 |
. . . . . . 7
|
| 5 | 4 | abbidv 2322 |
. . . . . 6
|
| 6 | 3, 5 | opeq12d 3826 |
. . . . 5
|
| 7 | 6 | breq1d 4053 |
. . . 4
|
| 8 | 7 | rexbidv 2506 |
. . 3
|
| 9 | caucvgprprlemell.lim |
. . . . 5
| |
| 10 | 9 | fveq2i 5578 |
. . . 4
|
| 11 | nqex 7475 |
. . . . . 6
| |
| 12 | 11 | rabex 4187 |
. . . . 5
|
| 13 | 11 | rabex 4187 |
. . . . 5
|
| 14 | 12, 13 | op1st 6231 |
. . . 4
|
| 15 | 10, 14 | eqtri 2225 |
. . 3
|
| 16 | 8, 15 | elrab2 2931 |
. 2
|
| 17 | opeq1 3818 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6655 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5579 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2d 5959 |
. . . . . . . . 9
|
| 21 | 20 | breq2d 4055 |
. . . . . . . 8
|
| 22 | 21 | abbidv 2322 |
. . . . . . 7
|
| 23 | 20 | breq1d 4053 |
. . . . . . . 8
|
| 24 | 23 | abbidv 2322 |
. . . . . . 7
|
| 25 | 22, 24 | opeq12d 3826 |
. . . . . 6
|
| 26 | fveq2 5575 |
. . . . . 6
| |
| 27 | 25, 26 | breq12d 4056 |
. . . . 5
|
| 28 | 27 | cbvrexv 2738 |
. . . 4
|
| 29 | opeq1 3818 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6655 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5579 |
. . . . . . . . . 10
|
| 32 | 31 | oveq2d 5959 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4055 |
. . . . . . . 8
|
| 34 | 33 | abbidv 2322 |
. . . . . . 7
|
| 35 | 32 | breq1d 4053 |
. . . . . . . 8
|
| 36 | 35 | abbidv 2322 |
. . . . . . 7
|
| 37 | 34, 36 | opeq12d 3826 |
. . . . . 6
|
| 38 | fveq2 5575 |
. . . . . 6
| |
| 39 | 37, 38 | breq12d 4056 |
. . . . 5
|
| 40 | 39 | cbvrexv 2738 |
. . . 4
|
| 41 | 28, 40 | bitri 184 |
. . 3
|
| 42 | 41 | anbi2i 457 |
. 2
|
| 43 | 16, 42 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-1st 6225 df-ec 6621 df-qs 6625 df-ni 7416 df-nqqs 7460 |
| This theorem is referenced by: caucvgprprlemopl 7809 caucvgprprlemlol 7810 caucvgprprlemdisj 7814 caucvgprprlemloc 7815 |
| Copyright terms: Public domain | W3C validator |