| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemell | Unicode version | ||
| Description: Lemma for caucvgprpr 7779. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemell |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 |
. . . . . . . 8
| |
| 2 | 1 | breq2d 4045 |
. . . . . . 7
|
| 3 | 2 | abbidv 2314 |
. . . . . 6
|
| 4 | 1 | breq1d 4043 |
. . . . . . 7
|
| 5 | 4 | abbidv 2314 |
. . . . . 6
|
| 6 | 3, 5 | opeq12d 3816 |
. . . . 5
|
| 7 | 6 | breq1d 4043 |
. . . 4
|
| 8 | 7 | rexbidv 2498 |
. . 3
|
| 9 | caucvgprprlemell.lim |
. . . . 5
| |
| 10 | 9 | fveq2i 5561 |
. . . 4
|
| 11 | nqex 7430 |
. . . . . 6
| |
| 12 | 11 | rabex 4177 |
. . . . 5
|
| 13 | 11 | rabex 4177 |
. . . . 5
|
| 14 | 12, 13 | op1st 6204 |
. . . 4
|
| 15 | 10, 14 | eqtri 2217 |
. . 3
|
| 16 | 8, 15 | elrab2 2923 |
. 2
|
| 17 | opeq1 3808 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6628 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5562 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2d 5938 |
. . . . . . . . 9
|
| 21 | 20 | breq2d 4045 |
. . . . . . . 8
|
| 22 | 21 | abbidv 2314 |
. . . . . . 7
|
| 23 | 20 | breq1d 4043 |
. . . . . . . 8
|
| 24 | 23 | abbidv 2314 |
. . . . . . 7
|
| 25 | 22, 24 | opeq12d 3816 |
. . . . . 6
|
| 26 | fveq2 5558 |
. . . . . 6
| |
| 27 | 25, 26 | breq12d 4046 |
. . . . 5
|
| 28 | 27 | cbvrexv 2730 |
. . . 4
|
| 29 | opeq1 3808 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6628 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5562 |
. . . . . . . . . 10
|
| 32 | 31 | oveq2d 5938 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4045 |
. . . . . . . 8
|
| 34 | 33 | abbidv 2314 |
. . . . . . 7
|
| 35 | 32 | breq1d 4043 |
. . . . . . . 8
|
| 36 | 35 | abbidv 2314 |
. . . . . . 7
|
| 37 | 34, 36 | opeq12d 3816 |
. . . . . 6
|
| 38 | fveq2 5558 |
. . . . . 6
| |
| 39 | 37, 38 | breq12d 4046 |
. . . . 5
|
| 40 | 39 | cbvrexv 2730 |
. . . 4
|
| 41 | 28, 40 | bitri 184 |
. . 3
|
| 42 | 41 | anbi2i 457 |
. 2
|
| 43 | 16, 42 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-1st 6198 df-ec 6594 df-qs 6598 df-ni 7371 df-nqqs 7415 |
| This theorem is referenced by: caucvgprprlemopl 7764 caucvgprprlemlol 7765 caucvgprprlemdisj 7769 caucvgprprlemloc 7770 |
| Copyright terms: Public domain | W3C validator |