| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemell | Unicode version | ||
| Description: Lemma for caucvgprpr 7855. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemell |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5969 |
. . . . . . . 8
| |
| 2 | 1 | breq2d 4066 |
. . . . . . 7
|
| 3 | 2 | abbidv 2324 |
. . . . . 6
|
| 4 | 1 | breq1d 4064 |
. . . . . . 7
|
| 5 | 4 | abbidv 2324 |
. . . . . 6
|
| 6 | 3, 5 | opeq12d 3836 |
. . . . 5
|
| 7 | 6 | breq1d 4064 |
. . . 4
|
| 8 | 7 | rexbidv 2508 |
. . 3
|
| 9 | caucvgprprlemell.lim |
. . . . 5
| |
| 10 | 9 | fveq2i 5597 |
. . . 4
|
| 11 | nqex 7506 |
. . . . . 6
| |
| 12 | 11 | rabex 4199 |
. . . . 5
|
| 13 | 11 | rabex 4199 |
. . . . 5
|
| 14 | 12, 13 | op1st 6250 |
. . . 4
|
| 15 | 10, 14 | eqtri 2227 |
. . 3
|
| 16 | 8, 15 | elrab2 2936 |
. 2
|
| 17 | opeq1 3828 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6674 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5598 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2d 5978 |
. . . . . . . . 9
|
| 21 | 20 | breq2d 4066 |
. . . . . . . 8
|
| 22 | 21 | abbidv 2324 |
. . . . . . 7
|
| 23 | 20 | breq1d 4064 |
. . . . . . . 8
|
| 24 | 23 | abbidv 2324 |
. . . . . . 7
|
| 25 | 22, 24 | opeq12d 3836 |
. . . . . 6
|
| 26 | fveq2 5594 |
. . . . . 6
| |
| 27 | 25, 26 | breq12d 4067 |
. . . . 5
|
| 28 | 27 | cbvrexv 2740 |
. . . 4
|
| 29 | opeq1 3828 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6674 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5598 |
. . . . . . . . . 10
|
| 32 | 31 | oveq2d 5978 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4066 |
. . . . . . . 8
|
| 34 | 33 | abbidv 2324 |
. . . . . . 7
|
| 35 | 32 | breq1d 4064 |
. . . . . . . 8
|
| 36 | 35 | abbidv 2324 |
. . . . . . 7
|
| 37 | 34, 36 | opeq12d 3836 |
. . . . . 6
|
| 38 | fveq2 5594 |
. . . . . 6
| |
| 39 | 37, 38 | breq12d 4067 |
. . . . 5
|
| 40 | 39 | cbvrexv 2740 |
. . . 4
|
| 41 | 28, 40 | bitri 184 |
. . 3
|
| 42 | 41 | anbi2i 457 |
. 2
|
| 43 | 16, 42 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-1st 6244 df-ec 6640 df-qs 6644 df-ni 7447 df-nqqs 7491 |
| This theorem is referenced by: caucvgprprlemopl 7840 caucvgprprlemlol 7841 caucvgprprlemdisj 7845 caucvgprprlemloc 7846 |
| Copyright terms: Public domain | W3C validator |