Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemell | Unicode version |
Description: Lemma for caucvgprpr 7653. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
Ref | Expression |
---|---|
caucvgprprlemell.lim |
Ref | Expression |
---|---|
caucvgprprlemell |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . . . . . 8 | |
2 | 1 | breq2d 3994 | . . . . . . 7 |
3 | 2 | abbidv 2284 | . . . . . 6 |
4 | 1 | breq1d 3992 | . . . . . . 7 |
5 | 4 | abbidv 2284 | . . . . . 6 |
6 | 3, 5 | opeq12d 3766 | . . . . 5 |
7 | 6 | breq1d 3992 | . . . 4 |
8 | 7 | rexbidv 2467 | . . 3 |
9 | caucvgprprlemell.lim | . . . . 5 | |
10 | 9 | fveq2i 5489 | . . . 4 |
11 | nqex 7304 | . . . . . 6 | |
12 | 11 | rabex 4126 | . . . . 5 |
13 | 11 | rabex 4126 | . . . . 5 |
14 | 12, 13 | op1st 6114 | . . . 4 |
15 | 10, 14 | eqtri 2186 | . . 3 |
16 | 8, 15 | elrab2 2885 | . 2 |
17 | opeq1 3758 | . . . . . . . . . . . 12 | |
18 | 17 | eceq1d 6537 | . . . . . . . . . . 11 |
19 | 18 | fveq2d 5490 | . . . . . . . . . 10 |
20 | 19 | oveq2d 5858 | . . . . . . . . 9 |
21 | 20 | breq2d 3994 | . . . . . . . 8 |
22 | 21 | abbidv 2284 | . . . . . . 7 |
23 | 20 | breq1d 3992 | . . . . . . . 8 |
24 | 23 | abbidv 2284 | . . . . . . 7 |
25 | 22, 24 | opeq12d 3766 | . . . . . 6 |
26 | fveq2 5486 | . . . . . 6 | |
27 | 25, 26 | breq12d 3995 | . . . . 5 |
28 | 27 | cbvrexv 2693 | . . . 4 |
29 | opeq1 3758 | . . . . . . . . . . . 12 | |
30 | 29 | eceq1d 6537 | . . . . . . . . . . 11 |
31 | 30 | fveq2d 5490 | . . . . . . . . . 10 |
32 | 31 | oveq2d 5858 | . . . . . . . . 9 |
33 | 32 | breq2d 3994 | . . . . . . . 8 |
34 | 33 | abbidv 2284 | . . . . . . 7 |
35 | 32 | breq1d 3992 | . . . . . . . 8 |
36 | 35 | abbidv 2284 | . . . . . . 7 |
37 | 34, 36 | opeq12d 3766 | . . . . . 6 |
38 | fveq2 5486 | . . . . . 6 | |
39 | 37, 38 | breq12d 3995 | . . . . 5 |
40 | 39 | cbvrexv 2693 | . . . 4 |
41 | 28, 40 | bitri 183 | . . 3 |
42 | 41 | anbi2i 453 | . 2 |
43 | 16, 42 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wrex 2445 crab 2448 cop 3579 class class class wbr 3982 cfv 5188 (class class class)co 5842 c1st 6106 c1o 6377 cec 6499 cnpi 7213 ceq 7220 cnq 7221 cplq 7223 crq 7225 cltq 7226 cpp 7234 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-1st 6108 df-ec 6503 df-qs 6507 df-ni 7245 df-nqqs 7289 |
This theorem is referenced by: caucvgprprlemopl 7638 caucvgprprlemlol 7639 caucvgprprlemdisj 7643 caucvgprprlemloc 7644 |
Copyright terms: Public domain | W3C validator |