| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemell | Unicode version | ||
| Description: Lemma for caucvgprpr 7895. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemell |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6007 |
. . . . . . . 8
| |
| 2 | 1 | breq2d 4094 |
. . . . . . 7
|
| 3 | 2 | abbidv 2347 |
. . . . . 6
|
| 4 | 1 | breq1d 4092 |
. . . . . . 7
|
| 5 | 4 | abbidv 2347 |
. . . . . 6
|
| 6 | 3, 5 | opeq12d 3864 |
. . . . 5
|
| 7 | 6 | breq1d 4092 |
. . . 4
|
| 8 | 7 | rexbidv 2531 |
. . 3
|
| 9 | caucvgprprlemell.lim |
. . . . 5
| |
| 10 | 9 | fveq2i 5629 |
. . . 4
|
| 11 | nqex 7546 |
. . . . . 6
| |
| 12 | 11 | rabex 4227 |
. . . . 5
|
| 13 | 11 | rabex 4227 |
. . . . 5
|
| 14 | 12, 13 | op1st 6290 |
. . . 4
|
| 15 | 10, 14 | eqtri 2250 |
. . 3
|
| 16 | 8, 15 | elrab2 2962 |
. 2
|
| 17 | opeq1 3856 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6714 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5630 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2d 6016 |
. . . . . . . . 9
|
| 21 | 20 | breq2d 4094 |
. . . . . . . 8
|
| 22 | 21 | abbidv 2347 |
. . . . . . 7
|
| 23 | 20 | breq1d 4092 |
. . . . . . . 8
|
| 24 | 23 | abbidv 2347 |
. . . . . . 7
|
| 25 | 22, 24 | opeq12d 3864 |
. . . . . 6
|
| 26 | fveq2 5626 |
. . . . . 6
| |
| 27 | 25, 26 | breq12d 4095 |
. . . . 5
|
| 28 | 27 | cbvrexv 2766 |
. . . 4
|
| 29 | opeq1 3856 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6714 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5630 |
. . . . . . . . . 10
|
| 32 | 31 | oveq2d 6016 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4094 |
. . . . . . . 8
|
| 34 | 33 | abbidv 2347 |
. . . . . . 7
|
| 35 | 32 | breq1d 4092 |
. . . . . . . 8
|
| 36 | 35 | abbidv 2347 |
. . . . . . 7
|
| 37 | 34, 36 | opeq12d 3864 |
. . . . . 6
|
| 38 | fveq2 5626 |
. . . . . 6
| |
| 39 | 37, 38 | breq12d 4095 |
. . . . 5
|
| 40 | 39 | cbvrexv 2766 |
. . . 4
|
| 41 | 28, 40 | bitri 184 |
. . 3
|
| 42 | 41 | anbi2i 457 |
. 2
|
| 43 | 16, 42 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-1st 6284 df-ec 6680 df-qs 6684 df-ni 7487 df-nqqs 7531 |
| This theorem is referenced by: caucvgprprlemopl 7880 caucvgprprlemlol 7881 caucvgprprlemdisj 7885 caucvgprprlemloc 7886 |
| Copyright terms: Public domain | W3C validator |