ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell Unicode version

Theorem caucvgprprlemell 7341
Description: Lemma for caucvgprpr 7368. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemell  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
Distinct variable groups:    F, b    F, l, r    u, F, r    X, b, p    X, l, r, p    u, X, p    X, q, b    q,
l, r    u, q
Allowed substitution hints:    F( q, p)    L( u, r, q, p, b, l)

Proof of Theorem caucvgprprlemell
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oveq1 5697 . . . . . . . 8  |-  ( l  =  X  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
21breq2d 3879 . . . . . . 7  |-  ( l  =  X  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
32abbidv 2212 . . . . . 6  |-  ( l  =  X  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
41breq1d 3877 . . . . . . 7  |-  ( l  =  X  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
54abbidv 2212 . . . . . 6  |-  ( l  =  X  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
63, 5opeq12d 3652 . . . . 5  |-  ( l  =  X  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
76breq1d 3877 . . . 4  |-  ( l  =  X  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
87rexbidv 2392 . . 3  |-  ( l  =  X  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
9 caucvgprprlemell.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
109fveq2i 5343 . . . 4  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
11 nqex 7019 . . . . . 6  |-  Q.  e.  _V
1211rabex 4004 . . . . 5  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
1311rabex 4004 . . . . 5  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
1412, 13op1st 5955 . . . 4  |-  ( 1st `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
1510, 14eqtri 2115 . . 3  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
168, 15elrab2 2788 . 2  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
17 opeq1 3644 . . . . . . . . . . . 12  |-  ( r  =  a  ->  <. r ,  1o >.  =  <. a ,  1o >. )
1817eceq1d 6368 . . . . . . . . . . 11  |-  ( r  =  a  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1918fveq2d 5344 . . . . . . . . . 10  |-  ( r  =  a  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
2019oveq2d 5706 . . . . . . . . 9  |-  ( r  =  a  ->  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  =  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
2120breq2d 3879 . . . . . . . 8  |-  ( r  =  a  ->  (
p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) ) )
2221abbidv 2212 . . . . . . 7  |-  ( r  =  a  ->  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } )
2320breq1d 3877 . . . . . . . 8  |-  ( r  =  a  ->  (
( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q ) )
2423abbidv 2212 . . . . . . 7  |-  ( r  =  a  ->  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } )
2522, 24opeq12d 3652 . . . . . 6  |-  ( r  =  a  ->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } >. )
26 fveq2 5340 . . . . . 6  |-  ( r  =  a  ->  ( F `  r )  =  ( F `  a ) )
2725, 26breq12d 3880 . . . . 5  |-  ( r  =  a  ->  ( <. { p  |  p 
<Q  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )
) )
2827cbvrexv 2605 . . . 4  |-  ( E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. a  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )
)
29 opeq1 3644 . . . . . . . . . . . 12  |-  ( a  =  b  ->  <. a ,  1o >.  =  <. b ,  1o >. )
3029eceq1d 6368 . . . . . . . . . . 11  |-  ( a  =  b  ->  [ <. a ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
3130fveq2d 5344 . . . . . . . . . 10  |-  ( a  =  b  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
3231oveq2d 5706 . . . . . . . . 9  |-  ( a  =  b  ->  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  =  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
3332breq2d 3879 . . . . . . . 8  |-  ( a  =  b  ->  (
p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) ) )
3433abbidv 2212 . . . . . . 7  |-  ( a  =  b  ->  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } )
3532breq1d 3877 . . . . . . . 8  |-  ( a  =  b  ->  (
( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q ) )
3635abbidv 2212 . . . . . . 7  |-  ( a  =  b  ->  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } )
3734, 36opeq12d 3652 . . . . . 6  |-  ( a  =  b  ->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } >. )
38 fveq2 5340 . . . . . 6  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
3937, 38breq12d 3880 . . . . 5  |-  ( a  =  b  ->  ( <. { p  |  p 
<Q  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  <->  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
4039cbvrexv 2605 . . . 4  |-  ( E. a  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  <->  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)
4128, 40bitri 183 . . 3  |-  ( E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)
4241anbi2i 446 . 2  |-  ( ( X  e.  Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( X  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
4316, 42bitri 183 1  |-  ( X  e.  ( 1st `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   {cab 2081   E.wrex 2371   {crab 2374   <.cop 3469   class class class wbr 3867   ` cfv 5049  (class class class)co 5690   1stc1st 5947   1oc1o 6212   [cec 6330   N.cnpi 6928    ~Q ceq 6935   Q.cnq 6936    +Q cplq 6938   *Qcrq 6940    <Q cltq 6941    +P. cpp 6949    <P cltp 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-1st 5949  df-ec 6334  df-qs 6338  df-ni 6960  df-nqqs 7004
This theorem is referenced by:  caucvgprprlemopl  7353  caucvgprprlemlol  7354  caucvgprprlemdisj  7358  caucvgprprlemloc  7359
  Copyright terms: Public domain W3C validator