ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climeq Unicode version

Theorem climeq 11100
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1  |-  Z  =  ( ZZ>= `  M )
climeq.2  |-  ( ph  ->  F  e.  V )
climeq.3  |-  ( ph  ->  G  e.  W )
climeq.5  |-  ( ph  ->  M  e.  ZZ )
climeq.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climeq  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climeq.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climeq.2 . . 3  |-  ( ph  ->  F  e.  V )
4 climeq.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
51, 2, 3, 4clim2 11084 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
6 climeq.3 . . 3  |-  ( ph  ->  G  e.  W )
7 eqidd 2141 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
81, 2, 6, 7clim2 11084 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
95, 8bitr4d 190 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-clim 11080
This theorem is referenced by:  climmpt  11101  climres  11104  climshft  11105  climshft2  11107  isumclim3  11224
  Copyright terms: Public domain W3C validator