ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climeq GIF version

Theorem climeq 10572
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1 𝑍 = (ℤ𝑀)
climeq.2 (𝜑𝐹𝑉)
climeq.3 (𝜑𝐺𝑊)
climeq.5 (𝜑𝑀 ∈ ℤ)
climeq.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeq (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3 𝑍 = (ℤ𝑀)
2 climeq.5 . . 3 (𝜑𝑀 ∈ ℤ)
3 climeq.2 . . 3 (𝜑𝐹𝑉)
4 climeq.6 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
51, 2, 3, 4clim2 10556 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
6 climeq.3 . . 3 (𝜑𝐺𝑊)
7 eqidd 2086 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
81, 2, 6, 7clim2 10556 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
95, 8bitr4d 189 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wral 2355  wrex 2356   class class class wbr 3819  cfv 4977  (class class class)co 5606  cc 7284   < clt 7458  cmin 7589  cz 8675  cuz 8943  +crp 9058  abscabs 10317  cli 10551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3930  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324  ax-cnex 7372  ax-resscn 7373  ax-1cn 7374  ax-1re 7375  ax-icn 7376  ax-addcl 7377  ax-addrcl 7378  ax-mulcl 7379  ax-addcom 7381  ax-addass 7383  ax-distr 7385  ax-i2m1 7386  ax-0lt1 7387  ax-0id 7389  ax-rnegex 7390  ax-cnre 7392  ax-pre-ltirr 7393  ax-pre-ltwlin 7394  ax-pre-lttrn 7395  ax-pre-apti 7396  ax-pre-ltadd 7397
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-if 3380  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-int 3671  df-br 3820  df-opab 3874  df-mpt 3875  df-id 4092  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-rn 4420  df-res 4421  df-ima 4422  df-iota 4942  df-fun 4979  df-fn 4980  df-f 4981  df-fv 4985  df-riota 5562  df-ov 5609  df-oprab 5610  df-mpt2 5611  df-pnf 7460  df-mnf 7461  df-xr 7462  df-ltxr 7463  df-le 7464  df-sub 7591  df-neg 7592  df-inn 8350  df-n0 8599  df-z 8676  df-uz 8944  df-clim 10552
This theorem is referenced by:  climmpt  10573  climres  10576  climshft  10577  climshft2  10579
  Copyright terms: Public domain W3C validator