Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  climeq GIF version

Theorem climeq 11099
 Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1 𝑍 = (ℤ𝑀)
climeq.2 (𝜑𝐹𝑉)
climeq.3 (𝜑𝐺𝑊)
climeq.5 (𝜑𝑀 ∈ ℤ)
climeq.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeq (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3 𝑍 = (ℤ𝑀)
2 climeq.5 . . 3 (𝜑𝑀 ∈ ℤ)
3 climeq.2 . . 3 (𝜑𝐹𝑉)
4 climeq.6 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
51, 2, 3, 4clim2 11083 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
6 climeq.3 . . 3 (𝜑𝐺𝑊)
7 eqidd 2141 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
81, 2, 6, 7clim2 11083 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
95, 8bitr4d 190 1 (𝜑 → (𝐹𝐴𝐺𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418   class class class wbr 3936  ‘cfv 5130  (class class class)co 5781  ℂcc 7641   < clt 7823   − cmin 7956  ℤcz 9077  ℤ≥cuz 9349  ℝ+crp 9469  abscabs 10800   ⇝ cli 11078 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-uz 9350  df-clim 11079 This theorem is referenced by:  climmpt  11100  climres  11103  climshft  11104  climshft2  11106  isumclim3  11223
 Copyright terms: Public domain W3C validator