ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climi0 Unicode version

Theorem climi0 11051
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1  |-  Z  =  ( ZZ>= `  M )
climi.2  |-  ( ph  ->  M  e.  ZZ )
climi.3  |-  ( ph  ->  C  e.  RR+ )
climi.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
climi0.5  |-  ( ph  ->  F  ~~>  0 )
Assertion
Ref Expression
climi0  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  B )  <  C )
Distinct variable groups:    j, k, C   
j, F, k    ph, j,
k    j, Z, k    j, M
Allowed substitution hints:    B( j, k)    M( k)

Proof of Theorem climi0
StepHypRef Expression
1 climi.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climi.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climi.3 . . 3  |-  ( ph  ->  C  e.  RR+ )
4 climi.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
5 climi0.5 . . 3  |-  ( ph  ->  F  ~~>  0 )
61, 2, 3, 4, 5climi 11049 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  C ) )
7 subid1 7975 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  -  0 )  =  B )
87fveq2d 5418 . . . . . 6  |-  ( B  e.  CC  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
98breq1d 3934 . . . . 5  |-  ( B  e.  CC  ->  (
( abs `  ( B  -  0 ) )  <  C  <->  ( abs `  B )  <  C
) )
109biimpa 294 . . . 4  |-  ( ( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  C )  -> 
( abs `  B
)  <  C )
1110ralimi 2493 . . 3  |-  ( A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
C )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  C )
1211reximi 2527 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
C )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  C )
136, 12syl 14 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  B )  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613    < clt 7793    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   RR+crp 9434   abscabs 10762    ~~> cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-clim 11041
This theorem is referenced by:  mertenslem2  11298
  Copyright terms: Public domain W3C validator