ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climi0 GIF version

Theorem climi0 11090
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1 𝑍 = (ℤ𝑀)
climi.2 (𝜑𝑀 ∈ ℤ)
climi.3 (𝜑𝐶 ∈ ℝ+)
climi.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climi0.5 (𝜑𝐹 ⇝ 0)
Assertion
Ref Expression
climi0 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝐶   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝑀
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem climi0
StepHypRef Expression
1 climi.1 . . 3 𝑍 = (ℤ𝑀)
2 climi.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climi.3 . . 3 (𝜑𝐶 ∈ ℝ+)
4 climi.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 climi0.5 . . 3 (𝜑𝐹 ⇝ 0)
61, 2, 3, 4, 5climi 11088 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶))
7 subid1 8006 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
87fveq2d 5433 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
98breq1d 3947 . . . . 5 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝐶 ↔ (abs‘𝐵) < 𝐶))
109biimpa 294 . . . 4 ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → (abs‘𝐵) < 𝐶)
1110ralimi 2498 . . 3 (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
1211reximi 2532 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
136, 12syl 14 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  wrex 2418   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644   < clt 7824  cmin 7957  cz 9078  cuz 9350  +crp 9470  abscabs 10801  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-clim 11080
This theorem is referenced by:  mertenslem2  11337
  Copyright terms: Public domain W3C validator