ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpval GIF version

Theorem cnpval 13701
Description: The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
Distinct variable groups:   π‘₯,𝑓,𝑦,𝐽   𝑓,𝐾,π‘₯,𝑦   𝑓,𝑋,π‘₯,𝑦   𝑃,𝑓,π‘₯,𝑦   𝑓,π‘Œ,π‘₯,𝑦

Proof of Theorem cnpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cnpfval 13698 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 CnP 𝐾) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}))
21fveq1d 5518 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})β€˜π‘ƒ))
32adantr 276 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})β€˜π‘ƒ))
4 eqid 2177 . . . 4 (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
5 fveq2 5516 . . . . . . . 8 (𝑣 = 𝑃 β†’ (π‘“β€˜π‘£) = (π‘“β€˜π‘ƒ))
65eleq1d 2246 . . . . . . 7 (𝑣 = 𝑃 β†’ ((π‘“β€˜π‘£) ∈ 𝑦 ↔ (π‘“β€˜π‘ƒ) ∈ 𝑦))
7 eleq1 2240 . . . . . . . . 9 (𝑣 = 𝑃 β†’ (𝑣 ∈ π‘₯ ↔ 𝑃 ∈ π‘₯))
87anbi1d 465 . . . . . . . 8 (𝑣 = 𝑃 β†’ ((𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)))
98rexbidv 2478 . . . . . . 7 (𝑣 = 𝑃 β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)))
106, 9imbi12d 234 . . . . . 6 (𝑣 = 𝑃 β†’ (((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))))
1110ralbidv 2477 . . . . 5 (𝑣 = 𝑃 β†’ (βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))))
1211rabbidv 2727 . . . 4 (𝑣 = 𝑃 β†’ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
13 simpr 110 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
14 fnmap 6655 . . . . . 6 β†‘π‘š Fn (V Γ— V)
15 toponmax 13528 . . . . . . . 8 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
1615elexd 2751 . . . . . . 7 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ V)
1716ad2antlr 489 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ π‘Œ ∈ V)
18 toponmax 13528 . . . . . . . 8 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
1918elexd 2751 . . . . . . 7 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ V)
2019ad2antrr 488 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ 𝑋 ∈ V)
21 fnovex 5908 . . . . . 6 (( β†‘π‘š Fn (V Γ— V) ∧ π‘Œ ∈ V ∧ 𝑋 ∈ V) β†’ (π‘Œ β†‘π‘š 𝑋) ∈ V)
2214, 17, 20, 21mp3an2i 1342 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ (π‘Œ β†‘π‘š 𝑋) ∈ V)
23 rabexg 4147 . . . . 5 ((π‘Œ β†‘π‘š 𝑋) ∈ V β†’ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ∈ V)
2422, 23syl 14 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ∈ V)
254, 12, 13, 24fvmptd3 5610 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘£) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑣 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
263, 25eqtrd 2210 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
27263impa 1194 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459  Vcvv 2738   βŠ† wss 3130   ↦ cmpt 4065   Γ— cxp 4625   β€œ cima 4630   Fn wfn 5212  β€˜cfv 5217  (class class class)co 5875   β†‘π‘š cmap 6648  TopOnctopon 13513   CnP ccnp 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-top 13501  df-topon 13514  df-cnp 13692
This theorem is referenced by:  iscnp  13702
  Copyright terms: Public domain W3C validator