Step | Hyp | Ref
| Expression |
1 | | cnpfval 13698 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ CnP πΎ) = (π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))})) |
2 | 1 | fveq1d 5518 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((π½ CnP πΎ)βπ) = ((π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))})βπ)) |
3 | 2 | adantr 276 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β ((π½ CnP πΎ)βπ) = ((π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))})βπ)) |
4 | | eqid 2177 |
. . . 4
β’ (π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))}) = (π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))}) |
5 | | fveq2 5516 |
. . . . . . . 8
β’ (π£ = π β (πβπ£) = (πβπ)) |
6 | 5 | eleq1d 2246 |
. . . . . . 7
β’ (π£ = π β ((πβπ£) β π¦ β (πβπ) β π¦)) |
7 | | eleq1 2240 |
. . . . . . . . 9
β’ (π£ = π β (π£ β π₯ β π β π₯)) |
8 | 7 | anbi1d 465 |
. . . . . . . 8
β’ (π£ = π β ((π£ β π₯ β§ (π β π₯) β π¦) β (π β π₯ β§ (π β π₯) β π¦))) |
9 | 8 | rexbidv 2478 |
. . . . . . 7
β’ (π£ = π β (βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦) β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))) |
10 | 6, 9 | imbi12d 234 |
. . . . . 6
β’ (π£ = π β (((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦)) β ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦)))) |
11 | 10 | ralbidv 2477 |
. . . . 5
β’ (π£ = π β (βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦)) β βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦)))) |
12 | 11 | rabbidv 2727 |
. . . 4
β’ (π£ = π β {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))} = {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))}) |
13 | | simpr 110 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β π β π) |
14 | | fnmap 6655 |
. . . . . 6
β’
βπ Fn (V Γ V) |
15 | | toponmax 13528 |
. . . . . . . 8
β’ (πΎ β (TopOnβπ) β π β πΎ) |
16 | 15 | elexd 2751 |
. . . . . . 7
β’ (πΎ β (TopOnβπ) β π β V) |
17 | 16 | ad2antlr 489 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β π β V) |
18 | | toponmax 13528 |
. . . . . . . 8
β’ (π½ β (TopOnβπ) β π β π½) |
19 | 18 | elexd 2751 |
. . . . . . 7
β’ (π½ β (TopOnβπ) β π β V) |
20 | 19 | ad2antrr 488 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β π β V) |
21 | | fnovex 5908 |
. . . . . 6
β’ ((
βπ Fn (V Γ V) β§ π β V β§ π β V) β (π βπ π) β V) |
22 | 14, 17, 20, 21 | mp3an2i 1342 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β (π βπ π) β V) |
23 | | rabexg 4147 |
. . . . 5
β’ ((π βπ
π) β V β {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))} β V) |
24 | 22, 23 | syl 14 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))} β V) |
25 | 4, 12, 13, 24 | fvmptd3 5610 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β ((π£ β π β¦ {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ£) β π¦ β βπ₯ β π½ (π£ β π₯ β§ (π β π₯) β π¦))})βπ) = {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))}) |
26 | 3, 25 | eqtrd 2210 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π β π) β ((π½ CnP πΎ)βπ) = {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))}) |
27 | 26 | 3impa 1194 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π β π) β ((π½ CnP πΎ)βπ) = {π β (π βπ π) β£ βπ¦ β πΎ ((πβπ) β π¦ β βπ₯ β π½ (π β π₯ β§ (π β π₯) β π¦))}) |