ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpval GIF version

Theorem cnpval 12209
Description: The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑓,𝐾,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑃,𝑓,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem cnpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cnpfval 12207 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}))
21fveq1d 5377 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃))
32adantr 272 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃))
4 eqid 2115 . . . 4 (𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}) = (𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
5 fveq2 5375 . . . . . . . 8 (𝑣 = 𝑃 → (𝑓𝑣) = (𝑓𝑃))
65eleq1d 2183 . . . . . . 7 (𝑣 = 𝑃 → ((𝑓𝑣) ∈ 𝑦 ↔ (𝑓𝑃) ∈ 𝑦))
7 eleq1 2177 . . . . . . . . 9 (𝑣 = 𝑃 → (𝑣𝑥𝑃𝑥))
87anbi1d 458 . . . . . . . 8 (𝑣 = 𝑃 → ((𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
98rexbidv 2412 . . . . . . 7 (𝑣 = 𝑃 → (∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)))
106, 9imbi12d 233 . . . . . 6 (𝑣 = 𝑃 → (((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
1110ralbidv 2411 . . . . 5 (𝑣 = 𝑃 → (∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))))
1211rabbidv 2646 . . . 4 (𝑣 = 𝑃 → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
13 simpr 109 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → 𝑃𝑋)
14 fnmap 6503 . . . . . 6 𝑚 Fn (V × V)
15 toponmax 12035 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
1615elexd 2670 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V)
1716ad2antlr 478 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → 𝑌 ∈ V)
18 toponmax 12035 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1918elexd 2670 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V)
2019ad2antrr 477 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → 𝑋 ∈ V)
21 fnovex 5758 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌𝑚 𝑋) ∈ V)
2214, 17, 20, 21mp3an2i 1303 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → (𝑌𝑚 𝑋) ∈ V)
23 rabexg 4031 . . . . 5 ((𝑌𝑚 𝑋) ∈ V → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ∈ V)
2422, 23syl 14 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ∈ V)
254, 12, 13, 24fvmptd3 5468 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → ((𝑣𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑣) ∈ 𝑦 → ∃𝑥𝐽 (𝑣𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
263, 25eqtrd 2147 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
27263impa 1159 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  wral 2390  wrex 2391  {crab 2394  Vcvv 2657  wss 3037  cmpt 3949   × cxp 4497  cima 4502   Fn wfn 5076  cfv 5081  (class class class)co 5728  𝑚 cmap 6496  TopOnctopon 12020   CnP ccnp 12198
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-map 6498  df-top 12008  df-topon 12021  df-cnp 12201
This theorem is referenced by:  iscnp  12210
  Copyright terms: Public domain W3C validator