Step | Hyp | Ref
| Expression |
1 | | cnpfval 12835 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})) |
2 | 1 | fveq1d 5488 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})‘𝑃)) |
3 | 2 | adantr 274 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})‘𝑃)) |
4 | | eqid 2165 |
. . . 4
⊢ (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
5 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑣 = 𝑃 → (𝑓‘𝑣) = (𝑓‘𝑃)) |
6 | 5 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑣 = 𝑃 → ((𝑓‘𝑣) ∈ 𝑦 ↔ (𝑓‘𝑃) ∈ 𝑦)) |
7 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑣 = 𝑃 → (𝑣 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) |
8 | 7 | anbi1d 461 |
. . . . . . . 8
⊢ (𝑣 = 𝑃 → ((𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))) |
9 | 8 | rexbidv 2467 |
. . . . . . 7
⊢ (𝑣 = 𝑃 → (∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))) |
10 | 6, 9 | imbi12d 233 |
. . . . . 6
⊢ (𝑣 = 𝑃 → (((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)) ↔ ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)))) |
11 | 10 | ralbidv 2466 |
. . . . 5
⊢ (𝑣 = 𝑃 → (∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)))) |
12 | 11 | rabbidv 2715 |
. . . 4
⊢ (𝑣 = 𝑃 → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
13 | | simpr 109 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
14 | | fnmap 6621 |
. . . . . 6
⊢
↑𝑚 Fn (V × V) |
15 | | toponmax 12663 |
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
16 | 15 | elexd 2739 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V) |
17 | 16 | ad2antlr 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → 𝑌 ∈ V) |
18 | | toponmax 12663 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
19 | 18 | elexd 2739 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) |
20 | 19 | ad2antrr 480 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → 𝑋 ∈ V) |
21 | | fnovex 5875 |
. . . . . 6
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌 ↑𝑚 𝑋) ∈ V) |
22 | 14, 17, 20, 21 | mp3an2i 1332 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → (𝑌 ↑𝑚 𝑋) ∈ V) |
23 | | rabexg 4125 |
. . . . 5
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))} ∈ V) |
24 | 22, 23 | syl 14 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))} ∈ V) |
25 | 4, 12, 13, 24 | fvmptd3 5579 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
26 | 3, 25 | eqtrd 2198 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
27 | 26 | 3impa 1184 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |