ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzctr Unicode version

Theorem fzctr 10135
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
fzctr  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )

Proof of Theorem fzctr
StepHypRef Expression
1 nn0ge0 9203 . 2  |-  ( N  e.  NN0  ->  0  <_  N )
2 nn0re 9187 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
3 nn0addge1 9224 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  <_  ( N  +  N ) )
42, 3mpancom 422 . . 3  |-  ( N  e.  NN0  ->  N  <_ 
( N  +  N
) )
5 nn0cn 9188 . . . 4  |-  ( N  e.  NN0  ->  N  e.  CC )
652timesd 9163 . . 3  |-  ( N  e.  NN0  ->  ( 2  x.  N )  =  ( N  +  N
) )
74, 6breqtrrd 4033 . 2  |-  ( N  e.  NN0  ->  N  <_ 
( 2  x.  N
) )
8 nn0z 9275 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 0zd 9267 . . 3  |-  ( N  e.  NN0  ->  0  e.  ZZ )
10 2z 9283 . . . 4  |-  2  e.  ZZ
11 zmulcl 9308 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
1210, 8, 11sylancr 414 . . 3  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e.  ZZ )
13 elfz 10016 . . 3  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ  /\  (
2  x.  N )  e.  ZZ )  -> 
( N  e.  ( 0 ... ( 2  x.  N ) )  <-> 
( 0  <_  N  /\  N  <_  ( 2  x.  N ) ) ) )
148, 9, 12, 13syl3anc 1238 . 2  |-  ( N  e.  NN0  ->  ( N  e.  ( 0 ... ( 2  x.  N
) )  <->  ( 0  <_  N  /\  N  <_  ( 2  x.  N
) ) ) )
151, 7, 14mpbir2and 944 1  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812   0cc0 7813    + caddc 7816    x. cmul 7818    <_ cle 7995   2c2 8972   NN0cn0 9178   ZZcz 9255   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-fz 10011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator