ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzctr Unicode version

Theorem fzctr 9903
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
fzctr  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )

Proof of Theorem fzctr
StepHypRef Expression
1 nn0ge0 8995 . 2  |-  ( N  e.  NN0  ->  0  <_  N )
2 nn0re 8979 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
3 nn0addge1 9016 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  <_  ( N  +  N ) )
42, 3mpancom 418 . . 3  |-  ( N  e.  NN0  ->  N  <_ 
( N  +  N
) )
5 nn0cn 8980 . . . 4  |-  ( N  e.  NN0  ->  N  e.  CC )
652timesd 8955 . . 3  |-  ( N  e.  NN0  ->  ( 2  x.  N )  =  ( N  +  N
) )
74, 6breqtrrd 3951 . 2  |-  ( N  e.  NN0  ->  N  <_ 
( 2  x.  N
) )
8 nn0z 9067 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 0zd 9059 . . 3  |-  ( N  e.  NN0  ->  0  e.  ZZ )
10 2z 9075 . . . 4  |-  2  e.  ZZ
11 zmulcl 9100 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
1210, 8, 11sylancr 410 . . 3  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e.  ZZ )
13 elfz 9789 . . 3  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ  /\  (
2  x.  N )  e.  ZZ )  -> 
( N  e.  ( 0 ... ( 2  x.  N ) )  <-> 
( 0  <_  N  /\  N  <_  ( 2  x.  N ) ) ) )
148, 9, 12, 13syl3anc 1216 . 2  |-  ( N  e.  NN0  ->  ( N  e.  ( 0 ... ( 2  x.  N
) )  <->  ( 0  <_  N  /\  N  <_  ( 2  x.  N
) ) ) )
151, 7, 14mpbir2and 928 1  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613    + caddc 7616    x. cmul 7618    <_ cle 7794   2c2 8764   NN0cn0 8970   ZZcz 9047   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator