Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzom1b | Unicode version |
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
elfzom1b | ..^ ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9243 | . . 3 | |
2 | elfzm1b 10047 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | fzoval 10097 | . . . 4 ..^ | |
5 | 4 | adantl 275 | . . 3 ..^ |
6 | 5 | eleq2d 2240 | . 2 ..^ |
7 | 1 | adantl 275 | . . . 4 |
8 | fzoval 10097 | . . . 4 ..^ | |
9 | 7, 8 | syl 14 | . . 3 ..^ |
10 | 9 | eleq2d 2240 | . 2 ..^ |
11 | 3, 6, 10 | 3bitr4d 219 | 1 ..^ ..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 (class class class)co 5851 cc0 7767 c1 7768 cmin 8083 cz 9205 cfz 9958 ..^cfzo 10091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-fz 9959 df-fzo 10092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |