ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1b GIF version

Theorem elfzom1b 10174
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
elfzom1b ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1))))

Proof of Theorem elfzom1b
StepHypRef Expression
1 peano2zm 9239 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 elfzm1b 10043 . . 3 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1))))
31, 2sylan2 284 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1))))
4 fzoval 10093 . . . 4 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
54adantl 275 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1..^𝑁) = (1...(𝑁 − 1)))
65eleq2d 2240 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ 𝐾 ∈ (1...(𝑁 − 1))))
71adantl 275 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 1) ∈ ℤ)
8 fzoval 10093 . . . 4 ((𝑁 − 1) ∈ ℤ → (0..^(𝑁 − 1)) = (0...((𝑁 − 1) − 1)))
97, 8syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(𝑁 − 1)) = (0...((𝑁 − 1) − 1)))
109eleq2d 2240 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − 1) ∈ (0..^(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1))))
113, 6, 103bitr4d 219 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  (class class class)co 5851  0cc0 7763  1c1 7764  cmin 8079  cz 9201  ...cfz 9954  ..^cfzo 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-z 9202  df-uz 9477  df-fz 9955  df-fzo 10088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator