Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzom1b | GIF version |
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
elfzom1b | ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9239 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | elfzm1b 10043 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1)))) | |
3 | 1, 2 | sylan2 284 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1)))) |
4 | fzoval 10093 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1))) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1..^𝑁) = (1...(𝑁 − 1))) |
6 | 5 | eleq2d 2240 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ 𝐾 ∈ (1...(𝑁 − 1)))) |
7 | 1 | adantl 275 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 1) ∈ ℤ) |
8 | fzoval 10093 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (0..^(𝑁 − 1)) = (0...((𝑁 − 1) − 1))) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(𝑁 − 1)) = (0...((𝑁 − 1) − 1))) |
10 | 9 | eleq2d 2240 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − 1) ∈ (0..^(𝑁 − 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 − 1) − 1)))) |
11 | 3, 6, 10 | 3bitr4d 219 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 (class class class)co 5851 0cc0 7763 1c1 7764 − cmin 8079 ℤcz 9201 ...cfz 9954 ..^cfzo 10087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-addass 7865 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-0id 7871 ax-rnegex 7872 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-inn 8868 df-n0 9125 df-z 9202 df-uz 9477 df-fz 9955 df-fzo 10088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |