| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapd | GIF version | ||
| Description: Deduction form of elmapg 6778. (Contributed by BJ, 11-Apr-2020.) |
| Ref | Expression |
|---|---|
| elmapd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmapd | ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elmapd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | elmapg 6778 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 ⟶wf 5290 (class class class)co 5974 ↑𝑚 cmap 6765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-map 6767 |
| This theorem is referenced by: elmapssres 6790 mapss 6808 pw2f1odclem 6963 mapen 6975 mapxpen 6977 fodjuf 7280 ismkvnex 7290 wrdval 11041 ptex 13263 ismhm 13460 psrelbas 14604 psraddcl 14609 psr0cl 14610 psrnegcl 14612 psr1clfi 14617 mplsubgfilemm 14627 mplsubgfilemcl 14628 cnpdis 14881 plycj 15400 bj-charfunbi 16084 2omap 16270 pw1map 16272 nninfself 16290 isomninnlem 16309 trilpolemlt1 16320 iswomninnlem 16328 iswomni0 16330 ismkvnnlem 16331 |
| Copyright terms: Public domain | W3C validator |