| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapd | GIF version | ||
| Description: Deduction form of elmapg 6755. (Contributed by BJ, 11-Apr-2020.) |
| Ref | Expression |
|---|---|
| elmapd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmapd | ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elmapd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | elmapg 6755 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 ⟶wf 5272 (class class class)co 5951 ↑𝑚 cmap 6742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-map 6744 |
| This theorem is referenced by: elmapssres 6767 mapss 6785 pw2f1odclem 6938 mapen 6950 mapxpen 6952 fodjuf 7254 ismkvnex 7264 wrdval 11004 ptex 13140 ismhm 13337 psrelbas 14481 psraddcl 14486 psr0cl 14487 psrnegcl 14489 psr1clfi 14494 mplsubgfilemm 14504 mplsubgfilemcl 14505 cnpdis 14758 plycj 15277 bj-charfunbi 15821 2omap 16006 nninfself 16024 isomninnlem 16043 trilpolemlt1 16054 iswomninnlem 16062 iswomni0 16064 ismkvnnlem 16065 |
| Copyright terms: Public domain | W3C validator |