| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapd | GIF version | ||
| Description: Deduction form of elmapg 6729. (Contributed by BJ, 11-Apr-2020.) |
| Ref | Expression |
|---|---|
| elmapd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmapd | ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elmapd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | elmapg 6729 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ⟶wf 5255 (class class class)co 5925 ↑𝑚 cmap 6716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: elmapssres 6741 mapss 6759 pw2f1odclem 6904 mapen 6916 mapxpen 6918 fodjuf 7220 ismkvnex 7230 wrdval 10955 ptex 12966 ismhm 13163 psrelbas 14304 psraddcl 14308 psr0cl 14309 psrnegcl 14311 psr1clfi 14316 cnpdis 14562 plycj 15081 bj-charfunbi 15541 2omap 15726 nninfself 15744 isomninnlem 15761 trilpolemlt1 15772 iswomninnlem 15780 iswomni0 15782 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |