| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapd | GIF version | ||
| Description: Deduction form of elmapg 6816. (Contributed by BJ, 11-Apr-2020.) |
| Ref | Expression |
|---|---|
| elmapd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmapd | ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elmapd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | elmapg 6816 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 ⟶wf 5314 (class class class)co 6007 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 |
| This theorem is referenced by: elmapssres 6828 mapss 6846 pw2f1odclem 7003 mapen 7015 mapxpen 7017 fodjuf 7320 ismkvnex 7330 wrdval 11082 ptex 13305 ismhm 13502 psrelbas 14647 psraddcl 14652 psr0cl 14653 psrnegcl 14655 psr1clfi 14660 mplsubgfilemm 14670 mplsubgfilemcl 14671 cnpdis 14924 plycj 15443 bj-charfunbi 16198 2omap 16388 pw1map 16390 nninfself 16409 isomninnlem 16428 trilpolemlt1 16439 iswomninnlem 16447 iswomni0 16449 ismkvnnlem 16450 |
| Copyright terms: Public domain | W3C validator |