![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version |
Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
nnnq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7377 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | opelxpi 4692 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan2 425 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | enqex 7422 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 4 | ecelqsi 6645 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-nqqs 7410 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eleqtrrdi 2287 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-suc 4403 df-iom 4624 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-1o 6471 df-ec 6591 df-qs 6595 df-ni 7366 df-enq 7409 df-nqqs 7410 |
This theorem is referenced by: recnnpr 7610 nnprlu 7615 archrecnq 7725 archrecpr 7726 caucvgprlemnkj 7728 caucvgprlemnbj 7729 caucvgprlemm 7730 caucvgprlemopl 7731 caucvgprlemlol 7732 caucvgprlemloc 7737 caucvgprlemladdfu 7739 caucvgprlemladdrl 7740 caucvgprprlemloccalc 7746 caucvgprprlemnkltj 7751 caucvgprprlemnkeqj 7752 caucvgprprlemnjltk 7753 caucvgprprlemml 7756 caucvgprprlemopl 7759 caucvgprprlemlol 7760 caucvgprprlemloc 7765 caucvgprprlemexb 7769 caucvgprprlem1 7771 caucvgprprlem2 7772 pitonnlem2 7909 ltrennb 7916 recidpipr 7918 |
Copyright terms: Public domain | W3C validator |