| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7428 |
. . . 4
| |
| 2 | opelxpi 4707 |
. . . 4
| |
| 3 | 1, 2 | mpan2 425 |
. . 3
|
| 4 | enqex 7473 |
. . . 4
| |
| 5 | 4 | ecelqsi 6676 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | df-nqqs 7461 |
. 2
| |
| 8 | 6, 7 | eleqtrrdi 2299 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-suc 4418 df-iom 4639 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-1o 6502 df-ec 6622 df-qs 6626 df-ni 7417 df-enq 7460 df-nqqs 7461 |
| This theorem is referenced by: recnnpr 7661 nnprlu 7666 archrecnq 7776 archrecpr 7777 caucvgprlemnkj 7779 caucvgprlemnbj 7780 caucvgprlemm 7781 caucvgprlemopl 7782 caucvgprlemlol 7783 caucvgprlemloc 7788 caucvgprlemladdfu 7790 caucvgprlemladdrl 7791 caucvgprprlemloccalc 7797 caucvgprprlemnkltj 7802 caucvgprprlemnkeqj 7803 caucvgprprlemnjltk 7804 caucvgprprlemml 7807 caucvgprprlemopl 7810 caucvgprprlemlol 7811 caucvgprprlemloc 7816 caucvgprprlemexb 7820 caucvgprprlem1 7822 caucvgprprlem2 7823 pitonnlem2 7960 ltrennb 7967 recidpipr 7969 |
| Copyright terms: Public domain | W3C validator |