| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7463 |
. . . 4
| |
| 2 | opelxpi 4725 |
. . . 4
| |
| 3 | 1, 2 | mpan2 425 |
. . 3
|
| 4 | enqex 7508 |
. . . 4
| |
| 5 | 4 | ecelqsi 6699 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | df-nqqs 7496 |
. 2
| |
| 8 | 6, 7 | eleqtrrdi 2301 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-suc 4436 df-iom 4657 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-1o 6525 df-ec 6645 df-qs 6649 df-ni 7452 df-enq 7495 df-nqqs 7496 |
| This theorem is referenced by: recnnpr 7696 nnprlu 7701 archrecnq 7811 archrecpr 7812 caucvgprlemnkj 7814 caucvgprlemnbj 7815 caucvgprlemm 7816 caucvgprlemopl 7817 caucvgprlemlol 7818 caucvgprlemloc 7823 caucvgprlemladdfu 7825 caucvgprlemladdrl 7826 caucvgprprlemloccalc 7832 caucvgprprlemnkltj 7837 caucvgprprlemnkeqj 7838 caucvgprprlemnjltk 7839 caucvgprprlemml 7842 caucvgprprlemopl 7845 caucvgprprlemlol 7846 caucvgprprlemloc 7851 caucvgprprlemexb 7855 caucvgprprlem1 7857 caucvgprprlem2 7858 pitonnlem2 7995 ltrennb 8002 recidpipr 8004 |
| Copyright terms: Public domain | W3C validator |