Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version |
Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
nnnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7256 | . . . 4 | |
2 | opelxpi 4636 | . . . 4 | |
3 | 1, 2 | mpan2 422 | . . 3 |
4 | enqex 7301 | . . . 4 | |
5 | 4 | ecelqsi 6555 | . . 3 |
6 | 3, 5 | syl 14 | . 2 |
7 | df-nqqs 7289 | . 2 | |
8 | 6, 7 | eleqtrrdi 2260 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cop 3579 cxp 4602 c1o 6377 cec 6499 cqs 6500 cnpi 7213 ceq 7220 cnq 7221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-suc 4349 df-iom 4568 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-1o 6384 df-ec 6503 df-qs 6507 df-ni 7245 df-enq 7288 df-nqqs 7289 |
This theorem is referenced by: recnnpr 7489 nnprlu 7494 archrecnq 7604 archrecpr 7605 caucvgprlemnkj 7607 caucvgprlemnbj 7608 caucvgprlemm 7609 caucvgprlemopl 7610 caucvgprlemlol 7611 caucvgprlemloc 7616 caucvgprlemladdfu 7618 caucvgprlemladdrl 7619 caucvgprprlemloccalc 7625 caucvgprprlemnkltj 7630 caucvgprprlemnkeqj 7631 caucvgprprlemnjltk 7632 caucvgprprlemml 7635 caucvgprprlemopl 7638 caucvgprprlemlol 7639 caucvgprprlemloc 7644 caucvgprprlemexb 7648 caucvgprprlem1 7650 caucvgprprlem2 7651 pitonnlem2 7788 ltrennb 7795 recidpipr 7797 |
Copyright terms: Public domain | W3C validator |