| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version | ||
| Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| nnnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pi 7498 |
. . . 4
| |
| 2 | opelxpi 4750 |
. . . 4
| |
| 3 | 1, 2 | mpan2 425 |
. . 3
|
| 4 | enqex 7543 |
. . . 4
| |
| 5 | 4 | ecelqsi 6734 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | df-nqqs 7531 |
. 2
| |
| 8 | 6, 7 | eleqtrrdi 2323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-suc 4461 df-iom 4682 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-1o 6560 df-ec 6680 df-qs 6684 df-ni 7487 df-enq 7530 df-nqqs 7531 |
| This theorem is referenced by: recnnpr 7731 nnprlu 7736 archrecnq 7846 archrecpr 7847 caucvgprlemnkj 7849 caucvgprlemnbj 7850 caucvgprlemm 7851 caucvgprlemopl 7852 caucvgprlemlol 7853 caucvgprlemloc 7858 caucvgprlemladdfu 7860 caucvgprlemladdrl 7861 caucvgprprlemloccalc 7867 caucvgprprlemnkltj 7872 caucvgprprlemnkeqj 7873 caucvgprprlemnjltk 7874 caucvgprprlemml 7877 caucvgprprlemopl 7880 caucvgprprlemlol 7881 caucvgprprlemloc 7886 caucvgprprlemexb 7890 caucvgprprlem1 7892 caucvgprprlem2 7893 pitonnlem2 8030 ltrennb 8037 recidpipr 8039 |
| Copyright terms: Public domain | W3C validator |