Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnq | Unicode version |
Description: The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
nnnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 7277 | . . . 4 | |
2 | opelxpi 4643 | . . . 4 | |
3 | 1, 2 | mpan2 423 | . . 3 |
4 | enqex 7322 | . . . 4 | |
5 | 4 | ecelqsi 6567 | . . 3 |
6 | 3, 5 | syl 14 | . 2 |
7 | df-nqqs 7310 | . 2 | |
8 | 6, 7 | eleqtrrdi 2264 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cop 3586 cxp 4609 c1o 6388 cec 6511 cqs 6512 cnpi 7234 ceq 7241 cnq 7242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-suc 4356 df-iom 4575 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-1o 6395 df-ec 6515 df-qs 6519 df-ni 7266 df-enq 7309 df-nqqs 7310 |
This theorem is referenced by: recnnpr 7510 nnprlu 7515 archrecnq 7625 archrecpr 7626 caucvgprlemnkj 7628 caucvgprlemnbj 7629 caucvgprlemm 7630 caucvgprlemopl 7631 caucvgprlemlol 7632 caucvgprlemloc 7637 caucvgprlemladdfu 7639 caucvgprlemladdrl 7640 caucvgprprlemloccalc 7646 caucvgprprlemnkltj 7651 caucvgprprlemnkeqj 7652 caucvgprprlemnjltk 7653 caucvgprprlemml 7656 caucvgprprlemopl 7659 caucvgprprlemlol 7660 caucvgprprlemloc 7665 caucvgprprlemexb 7669 caucvgprprlem1 7671 caucvgprprlem2 7672 pitonnlem2 7809 ltrennb 7816 recidpipr 7818 |
Copyright terms: Public domain | W3C validator |