ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprm Unicode version

Theorem nqprm 7504
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprm  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprm
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7374 . . 3  |-  ( A  e.  Q.  ->  E. q  e.  Q.  q  <Q  A )
2 vex 2733 . . . . 5  |-  q  e. 
_V
3 breq1 3992 . . . . 5  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
42, 3elab 2874 . . . 4  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
54rexbii 2477 . . 3  |-  ( E. q  e.  Q.  q  e.  { x  |  x 
<Q  A }  <->  E. q  e.  Q.  q  <Q  A )
61, 5sylibr 133 . 2  |-  ( A  e.  Q.  ->  E. q  e.  Q.  q  e.  {
x  |  x  <Q  A } )
7 archnqq 7379 . . . . 5  |-  ( A  e.  Q.  ->  E. n  e.  N.  A  <Q  [ <. n ,  1o >. ]  ~Q  )
8 df-rex 2454 . . . . 5  |-  ( E. n  e.  N.  A  <Q  [ <. n ,  1o >. ]  ~Q  <->  E. n
( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )
)
97, 8sylib 121 . . . 4  |-  ( A  e.  Q.  ->  E. n
( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )
)
10 1pi 7277 . . . . . . . 8  |-  1o  e.  N.
11 opelxpi 4643 . . . . . . . . 9  |-  ( ( n  e.  N.  /\  1o  e.  N. )  ->  <. n ,  1o >.  e.  ( N.  X.  N. ) )
12 enqex 7322 . . . . . . . . . 10  |-  ~Q  e.  _V
1312ecelqsi 6567 . . . . . . . . 9  |-  ( <.
n ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
1411, 13syl 14 . . . . . . . 8  |-  ( ( n  e.  N.  /\  1o  e.  N. )  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
1510, 14mpan2 423 . . . . . . 7  |-  ( n  e.  N.  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
16 df-nqqs 7310 . . . . . . 7  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1715, 16eleqtrrdi 2264 . . . . . 6  |-  ( n  e.  N.  ->  [ <. n ,  1o >. ]  ~Q  e.  Q. )
18 breq2 3993 . . . . . . 7  |-  ( r  =  [ <. n ,  1o >. ]  ~Q  ->  ( A  <Q  r  <->  A  <Q  [
<. n ,  1o >. ]  ~Q  ) )
1918rspcev 2834 . . . . . 6  |-  ( ( [ <. n ,  1o >. ]  ~Q  e.  Q.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r )
2017, 19sylan 281 . . . . 5  |-  ( ( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r )
2120exlimiv 1591 . . . 4  |-  ( E. n ( n  e. 
N.  /\  A  <Q  [
<. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r
)
229, 21syl 14 . . 3  |-  ( A  e.  Q.  ->  E. r  e.  Q.  A  <Q  r
)
23 vex 2733 . . . . 5  |-  r  e. 
_V
24 breq2 3993 . . . . 5  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
2523, 24elab 2874 . . . 4  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
2625rexbii 2477 . . 3  |-  ( E. r  e.  Q.  r  e.  { x  |  A  <Q  x }  <->  E. r  e.  Q.  A  <Q  r
)
2722, 26sylibr 133 . 2  |-  ( A  e.  Q.  ->  E. r  e.  Q.  r  e.  {
x  |  A  <Q  x } )
286, 27jca 304 1  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485    e. wcel 2141   {cab 2156   E.wrex 2449   <.cop 3586   class class class wbr 3989    X. cxp 4609   1oc1o 6388   [cec 6511   /.cqs 6512   N.cnpi 7234    ~Q ceq 7241   Q.cnq 7242    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315
This theorem is referenced by:  nqprxx  7508
  Copyright terms: Public domain W3C validator