ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprm Unicode version

Theorem nqprm 7543
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7548. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprm  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprm
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7413 . . 3  |-  ( A  e.  Q.  ->  E. q  e.  Q.  q  <Q  A )
2 vex 2742 . . . . 5  |-  q  e. 
_V
3 breq1 4008 . . . . 5  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
42, 3elab 2883 . . . 4  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
54rexbii 2484 . . 3  |-  ( E. q  e.  Q.  q  e.  { x  |  x 
<Q  A }  <->  E. q  e.  Q.  q  <Q  A )
61, 5sylibr 134 . 2  |-  ( A  e.  Q.  ->  E. q  e.  Q.  q  e.  {
x  |  x  <Q  A } )
7 archnqq 7418 . . . . 5  |-  ( A  e.  Q.  ->  E. n  e.  N.  A  <Q  [ <. n ,  1o >. ]  ~Q  )
8 df-rex 2461 . . . . 5  |-  ( E. n  e.  N.  A  <Q  [ <. n ,  1o >. ]  ~Q  <->  E. n
( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )
)
97, 8sylib 122 . . . 4  |-  ( A  e.  Q.  ->  E. n
( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )
)
10 1pi 7316 . . . . . . . 8  |-  1o  e.  N.
11 opelxpi 4660 . . . . . . . . 9  |-  ( ( n  e.  N.  /\  1o  e.  N. )  ->  <. n ,  1o >.  e.  ( N.  X.  N. ) )
12 enqex 7361 . . . . . . . . . 10  |-  ~Q  e.  _V
1312ecelqsi 6591 . . . . . . . . 9  |-  ( <.
n ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
1411, 13syl 14 . . . . . . . 8  |-  ( ( n  e.  N.  /\  1o  e.  N. )  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
1510, 14mpan2 425 . . . . . . 7  |-  ( n  e.  N.  ->  [ <. n ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
16 df-nqqs 7349 . . . . . . 7  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1715, 16eleqtrrdi 2271 . . . . . 6  |-  ( n  e.  N.  ->  [ <. n ,  1o >. ]  ~Q  e.  Q. )
18 breq2 4009 . . . . . . 7  |-  ( r  =  [ <. n ,  1o >. ]  ~Q  ->  ( A  <Q  r  <->  A  <Q  [
<. n ,  1o >. ]  ~Q  ) )
1918rspcev 2843 . . . . . 6  |-  ( ( [ <. n ,  1o >. ]  ~Q  e.  Q.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r )
2017, 19sylan 283 . . . . 5  |-  ( ( n  e.  N.  /\  A  <Q  [ <. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r )
2120exlimiv 1598 . . . 4  |-  ( E. n ( n  e. 
N.  /\  A  <Q  [
<. n ,  1o >. ]  ~Q  )  ->  E. r  e.  Q.  A  <Q  r
)
229, 21syl 14 . . 3  |-  ( A  e.  Q.  ->  E. r  e.  Q.  A  <Q  r
)
23 vex 2742 . . . . 5  |-  r  e. 
_V
24 breq2 4009 . . . . 5  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
2523, 24elab 2883 . . . 4  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
2625rexbii 2484 . . 3  |-  ( E. r  e.  Q.  r  e.  { x  |  A  <Q  x }  <->  E. r  e.  Q.  A  <Q  r
)
2722, 26sylibr 134 . 2  |-  ( A  e.  Q.  ->  E. r  e.  Q.  r  e.  {
x  |  A  <Q  x } )
286, 27jca 306 1  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   {cab 2163   E.wrex 2456   <.cop 3597   class class class wbr 4005    X. cxp 4626   1oc1o 6412   [cec 6535   /.cqs 6536   N.cnpi 7273    ~Q ceq 7280   Q.cnq 7281    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354
This theorem is referenced by:  nqprxx  7547
  Copyright terms: Public domain W3C validator