ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch Unicode version

Theorem prarloclemarch 7566
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7565 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7540 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
2 mulclnq 7524 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  .Q  ( *Q `  B ) )  e.  Q. )
31, 2sylan2 286 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  B ) )  e.  Q. )
4 archnqq 7565 . . 3  |-  ( ( A  .Q  ( *Q
`  B ) )  e.  Q.  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
53, 4syl 14 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) ) 
<Q  [ <. x ,  1o >. ]  ~Q  )
6 simpll 527 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  A  e.  Q. )
7 1pi 7463 . . . . . . . . . . 11  |-  1o  e.  N.
8 opelxpi 4725 . . . . . . . . . . 11  |-  ( ( x  e.  N.  /\  1o  e.  N. )  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
10 enqex 7508 . . . . . . . . . . 11  |-  ~Q  e.  _V
1110ecelqsi 6699 . . . . . . . . . 10  |-  ( <.
x ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
129, 11syl 14 . . . . . . . . 9  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
13 df-nqqs 7496 . . . . . . . . 9  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1412, 13eleqtrrdi 2301 . . . . . . . 8  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
1514adantl 277 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
16 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  B  e.  Q. )
17 mulclnq 7524 . . . . . . 7  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1916, 1syl 14 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( *Q `  B )  e.  Q. )
20 ltmnqg 7549 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
216, 18, 19, 20syl3anc 1250 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
22 mulcomnqg 7531 . . . . . . 7  |-  ( ( ( *Q `  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  B )  .Q  A
)  =  ( A  .Q  ( *Q `  B ) ) )
2319, 6, 22syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  A )  =  ( A  .Q  ( *Q
`  B ) ) )
24 mulcomnqg 7531 . . . . . . . 8  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
2519, 18, 24syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
26 mulassnqg 7532 . . . . . . . . 9  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
2715, 16, 19, 26syl3anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
28 recidnq 7541 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
2928oveq2d 5983 . . . . . . . . 9  |-  ( B  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q ) )
3016, 29syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [
<. x ,  1o >. ]  ~Q  .Q  1Q ) )
31 mulidnq 7537 . . . . . . . . 9  |-  ( [
<. x ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3215, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3327, 30, 323eqtrd 2244 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3425, 33eqtrd 2240 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3523, 34breq12d 4072 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( ( *Q `  B )  .Q  A )  <Q 
( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  <->  ( A  .Q  ( *Q `  B
) )  <Q  [ <. x ,  1o >. ]  ~Q  ) )
3621, 35bitrd 188 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
)
3736biimprd 158 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
3837reximdva 2610 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
395, 38mpd 13 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487   <.cop 3646   class class class wbr 4059    X. cxp 4691   ` cfv 5290  (class class class)co 5967   1oc1o 6518   [cec 6641   /.cqs 6642   N.cnpi 7420    ~Q ceq 7427   Q.cnq 7428   1Qc1q 7429    .Q cmq 7431   *Qcrq 7432    <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501
This theorem is referenced by:  prarloclemarch2  7567
  Copyright terms: Public domain W3C validator