ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch Unicode version

Theorem prarloclemarch 7478
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7477 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7452 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
2 mulclnq 7436 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  .Q  ( *Q `  B ) )  e.  Q. )
31, 2sylan2 286 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  B ) )  e.  Q. )
4 archnqq 7477 . . 3  |-  ( ( A  .Q  ( *Q
`  B ) )  e.  Q.  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
53, 4syl 14 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) ) 
<Q  [ <. x ,  1o >. ]  ~Q  )
6 simpll 527 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  A  e.  Q. )
7 1pi 7375 . . . . . . . . . . 11  |-  1o  e.  N.
8 opelxpi 4691 . . . . . . . . . . 11  |-  ( ( x  e.  N.  /\  1o  e.  N. )  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
10 enqex 7420 . . . . . . . . . . 11  |-  ~Q  e.  _V
1110ecelqsi 6643 . . . . . . . . . 10  |-  ( <.
x ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
129, 11syl 14 . . . . . . . . 9  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
13 df-nqqs 7408 . . . . . . . . 9  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1412, 13eleqtrrdi 2287 . . . . . . . 8  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
1514adantl 277 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
16 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  B  e.  Q. )
17 mulclnq 7436 . . . . . . 7  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1916, 1syl 14 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( *Q `  B )  e.  Q. )
20 ltmnqg 7461 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
216, 18, 19, 20syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
22 mulcomnqg 7443 . . . . . . 7  |-  ( ( ( *Q `  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  B )  .Q  A
)  =  ( A  .Q  ( *Q `  B ) ) )
2319, 6, 22syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  A )  =  ( A  .Q  ( *Q
`  B ) ) )
24 mulcomnqg 7443 . . . . . . . 8  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
2519, 18, 24syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
26 mulassnqg 7444 . . . . . . . . 9  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
2715, 16, 19, 26syl3anc 1249 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
28 recidnq 7453 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
2928oveq2d 5934 . . . . . . . . 9  |-  ( B  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q ) )
3016, 29syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [
<. x ,  1o >. ]  ~Q  .Q  1Q ) )
31 mulidnq 7449 . . . . . . . . 9  |-  ( [
<. x ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3215, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3327, 30, 323eqtrd 2230 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3425, 33eqtrd 2226 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3523, 34breq12d 4042 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( ( *Q `  B )  .Q  A )  <Q 
( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  <->  ( A  .Q  ( *Q `  B
) )  <Q  [ <. x ,  1o >. ]  ~Q  ) )
3621, 35bitrd 188 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
)
3736biimprd 158 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
3837reximdva 2596 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
395, 38mpd 13 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   <.cop 3621   class class class wbr 4029    X. cxp 4657   ` cfv 5254  (class class class)co 5918   1oc1o 6462   [cec 6585   /.cqs 6586   N.cnpi 7332    ~Q ceq 7339   Q.cnq 7340   1Qc1q 7341    .Q cmq 7343   *Qcrq 7344    <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413
This theorem is referenced by:  prarloclemarch2  7479
  Copyright terms: Public domain W3C validator