ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch Unicode version

Theorem prarloclemarch 6967
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 6966 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 6941 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
2 mulclnq 6925 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  .Q  ( *Q `  B ) )  e.  Q. )
31, 2sylan2 280 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  B ) )  e.  Q. )
4 archnqq 6966 . . 3  |-  ( ( A  .Q  ( *Q
`  B ) )  e.  Q.  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
53, 4syl 14 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) ) 
<Q  [ <. x ,  1o >. ]  ~Q  )
6 simpll 496 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  A  e.  Q. )
7 1pi 6864 . . . . . . . . . . 11  |-  1o  e.  N.
8 opelxpi 4467 . . . . . . . . . . 11  |-  ( ( x  e.  N.  /\  1o  e.  N. )  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
97, 8mpan2 416 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
10 enqex 6909 . . . . . . . . . . 11  |-  ~Q  e.  _V
1110ecelqsi 6336 . . . . . . . . . 10  |-  ( <.
x ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
129, 11syl 14 . . . . . . . . 9  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
13 df-nqqs 6897 . . . . . . . . 9  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1412, 13syl6eleqr 2181 . . . . . . . 8  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
1514adantl 271 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
16 simplr 497 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  B  e.  Q. )
17 mulclnq 6925 . . . . . . 7  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1815, 16, 17syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1916, 1syl 14 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( *Q `  B )  e.  Q. )
20 ltmnqg 6950 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
216, 18, 19, 20syl3anc 1174 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
22 mulcomnqg 6932 . . . . . . 7  |-  ( ( ( *Q `  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  B )  .Q  A
)  =  ( A  .Q  ( *Q `  B ) ) )
2319, 6, 22syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  A )  =  ( A  .Q  ( *Q
`  B ) ) )
24 mulcomnqg 6932 . . . . . . . 8  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
2519, 18, 24syl2anc 403 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
26 mulassnqg 6933 . . . . . . . . 9  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
2715, 16, 19, 26syl3anc 1174 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
28 recidnq 6942 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
2928oveq2d 5660 . . . . . . . . 9  |-  ( B  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q ) )
3016, 29syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [
<. x ,  1o >. ]  ~Q  .Q  1Q ) )
31 mulidnq 6938 . . . . . . . . 9  |-  ( [
<. x ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3215, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3327, 30, 323eqtrd 2124 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3425, 33eqtrd 2120 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3523, 34breq12d 3856 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( ( *Q `  B )  .Q  A )  <Q 
( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  <->  ( A  .Q  ( *Q `  B
) )  <Q  [ <. x ,  1o >. ]  ~Q  ) )
3621, 35bitrd 186 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
)
3736biimprd 156 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
3837reximdva 2475 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
395, 38mpd 13 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   E.wrex 2360   <.cop 3447   class class class wbr 3843    X. cxp 4434   ` cfv 5010  (class class class)co 5644   1oc1o 6166   [cec 6280   /.cqs 6281   N.cnpi 6821    ~Q ceq 6828   Q.cnq 6829   1Qc1q 6830    .Q cmq 6832   *Qcrq 6833    <Q cltq 6834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-eprel 4114  df-id 4118  df-iord 4191  df-on 4193  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-1o 6173  df-oadd 6177  df-omul 6178  df-er 6282  df-ec 6284  df-qs 6288  df-ni 6853  df-pli 6854  df-mi 6855  df-lti 6856  df-mpq 6894  df-enq 6896  df-nqqs 6897  df-mqqs 6899  df-1nqqs 6900  df-rq 6901  df-ltnqqs 6902
This theorem is referenced by:  prarloclemarch2  6968
  Copyright terms: Public domain W3C validator