| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3z | Unicode version | ||
| Description: If the operation  | 
| Ref | Expression | 
|---|---|
| seq3homo.1 | 
 | 
| seq3homo.2 | 
 | 
| seqz.3 | 
 | 
| seqz.4 | 
 | 
| seqz.5 | 
 | 
| seqz.7 | 
 | 
| Ref | Expression | 
|---|---|
| seq3z | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seqz.5 | 
. . 3
 | |
| 2 | elfzuz3 10097 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | fveqeq2 5567 | 
. . . 4
 | |
| 5 | 4 | imbi2d 230 | 
. . 3
 | 
| 6 | fveqeq2 5567 | 
. . . 4
 | |
| 7 | 6 | imbi2d 230 | 
. . 3
 | 
| 8 | fveqeq2 5567 | 
. . . 4
 | |
| 9 | 8 | imbi2d 230 | 
. . 3
 | 
| 10 | fveqeq2 5567 | 
. . . 4
 | |
| 11 | 10 | imbi2d 230 | 
. . 3
 | 
| 12 | elfzuz 10096 | 
. . . . . . . . . 10
 | |
| 13 | 1, 12 | syl 14 | 
. . . . . . . . 9
 | 
| 14 | eluzelz 9610 | 
. . . . . . . . 9
 | |
| 15 | 13, 14 | syl 14 | 
. . . . . . . 8
 | 
| 16 | simpr 110 | 
. . . . . . . . . 10
 | |
| 17 | 13 | adantr 276 | 
. . . . . . . . . 10
 | 
| 18 | uztrn 9618 | 
. . . . . . . . . 10
 | |
| 19 | 16, 17, 18 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 20 | seq3homo.2 | 
. . . . . . . . 9
 | |
| 21 | 19, 20 | syldan 282 | 
. . . . . . . 8
 | 
| 22 | seq3homo.1 | 
. . . . . . . 8
 | |
| 23 | 15, 21, 22 | seq3-1 10554 | 
. . . . . . 7
 | 
| 24 | seqz.7 | 
. . . . . . 7
 | |
| 25 | 23, 24 | eqtrd 2229 | 
. . . . . 6
 | 
| 26 | seqeq1 10542 | 
. . . . . . . 8
 | |
| 27 | 26 | fveq1d 5560 | 
. . . . . . 7
 | 
| 28 | 27 | eqeq1d 2205 | 
. . . . . 6
 | 
| 29 | 25, 28 | syl5ibcom 155 | 
. . . . 5
 | 
| 30 | eluzel2 9606 | 
. . . . . . . . . 10
 | |
| 31 | 13, 30 | syl 14 | 
. . . . . . . . 9
 | 
| 32 | 31 | adantr 276 | 
. . . . . . . 8
 | 
| 33 | simpr 110 | 
. . . . . . . 8
 | |
| 34 | 20 | adantlr 477 | 
. . . . . . . 8
 | 
| 35 | 22 | adantlr 477 | 
. . . . . . . 8
 | 
| 36 | 32, 33, 34, 35 | seq3m1 10565 | 
. . . . . . 7
 | 
| 37 | 24 | adantr 276 | 
. . . . . . . 8
 | 
| 38 | 37 | oveq2d 5938 | 
. . . . . . 7
 | 
| 39 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 40 | 39 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 41 | seqz.4 | 
. . . . . . . . . 10
 | |
| 42 | 41 | ralrimiva 2570 | 
. . . . . . . . 9
 | 
| 43 | 42 | adantr 276 | 
. . . . . . . 8
 | 
| 44 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 45 | 44, 32, 34, 35 | seqf 10556 | 
. . . . . . . . 9
 | 
| 46 | eluzp1m1 9625 | 
. . . . . . . . . 10
 | |
| 47 | 31, 46 | sylan 283 | 
. . . . . . . . 9
 | 
| 48 | 45, 47 | ffvelcdmd 5698 | 
. . . . . . . 8
 | 
| 49 | 40, 43, 48 | rspcdva 2873 | 
. . . . . . 7
 | 
| 50 | 36, 38, 49 | 3eqtrd 2233 | 
. . . . . 6
 | 
| 51 | 50 | ex 115 | 
. . . . 5
 | 
| 52 | uzp1 9635 | 
. . . . . 6
 | |
| 53 | 13, 52 | syl 14 | 
. . . . 5
 | 
| 54 | 29, 51, 53 | mpjaod 719 | 
. . . 4
 | 
| 55 | 54 | a1i 9 | 
. . 3
 | 
| 56 | simpr 110 | 
. . . . . . . . . 10
 | |
| 57 | 13 | adantr 276 | 
. . . . . . . . . 10
 | 
| 58 | uztrn 9618 | 
. . . . . . . . . 10
 | |
| 59 | 56, 57, 58 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 60 | 20 | adantlr 477 | 
. . . . . . . . 9
 | 
| 61 | 22 | adantlr 477 | 
. . . . . . . . 9
 | 
| 62 | 59, 60, 61 | seq3p1 10557 | 
. . . . . . . 8
 | 
| 63 | 62 | adantr 276 | 
. . . . . . 7
 | 
| 64 | simpr 110 | 
. . . . . . . 8
 | |
| 65 | 64 | oveq1d 5937 | 
. . . . . . 7
 | 
| 66 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 67 | 66 | eqeq1d 2205 | 
. . . . . . . . 9
 | 
| 68 | seqz.3 | 
. . . . . . . . . . 11
 | |
| 69 | 68 | ralrimiva 2570 | 
. . . . . . . . . 10
 | 
| 70 | 69 | adantr 276 | 
. . . . . . . . 9
 | 
| 71 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 72 | 71 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 73 | 20 | ralrimiva 2570 | 
. . . . . . . . . . 11
 | 
| 74 | 73 | adantr 276 | 
. . . . . . . . . 10
 | 
| 75 | peano2uz 9657 | 
. . . . . . . . . . 11
 | |
| 76 | 59, 75 | syl 14 | 
. . . . . . . . . 10
 | 
| 77 | 72, 74, 76 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 78 | 67, 70, 77 | rspcdva 2873 | 
. . . . . . . 8
 | 
| 79 | 78 | adantr 276 | 
. . . . . . 7
 | 
| 80 | 63, 65, 79 | 3eqtrd 2233 | 
. . . . . 6
 | 
| 81 | 80 | ex 115 | 
. . . . 5
 | 
| 82 | 81 | expcom 116 | 
. . . 4
 | 
| 83 | 82 | a2d 26 | 
. . 3
 | 
| 84 | 5, 7, 9, 11, 55, 83 | uzind4 9662 | 
. 2
 | 
| 85 | 3, 84 | mpcom 36 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 | 
| This theorem is referenced by: bcval5 10855 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |