ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3z Unicode version

Theorem seq3z 10125
Description: If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seq3homo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3homo.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seqz.3  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
seqz.4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
seqz.5  |-  ( ph  ->  K  e.  ( M ... N ) )
seqz.7  |-  ( ph  ->  ( F `  K
)  =  Z )
Assertion
Ref Expression
seq3z  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y, F   
x, M, y    x, N, y    ph, x, y   
x, K, y    x,  .+ , y    x, S, y   
x, Z, y

Proof of Theorem seq3z
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqz.5 . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzuz3 9644 . . 3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
4 fveqeq2 5362 . . . 4  |-  ( w  =  K  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) )
54imbi2d 229 . . 3  |-  ( w  =  K  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) ) )
6 fveqeq2 5362 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) )
76imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) ) )
8 fveqeq2 5362 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
98imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
10 fveqeq2 5362 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
1110imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) ) )
12 elfzuz 9643 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
131, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
14 eluzelz 9185 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
16 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  K )
)
1713adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
18 uztrn 9192 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
1916, 17, 18syl2anc 406 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  M )
)
20 seq3homo.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2119, 20syldan 278 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
22 seq3homo.1 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2315, 21, 22seq3-1 10074 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
24 seqz.7 . . . . . . 7  |-  ( ph  ->  ( F `  K
)  =  Z )
2523, 24eqtrd 2132 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  Z )
26 seqeq1 10062 . . . . . . . 8  |-  ( K  =  M  ->  seq K (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2726fveq1d 5355 . . . . . . 7  |-  ( K  =  M  ->  (  seq K (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
2827eqeq1d 2108 . . . . . 6  |-  ( K  =  M  ->  (
(  seq K (  .+  ,  F ) `  K
)  =  Z  <->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) )
2925, 28syl5ibcom 154 . . . . 5  |-  ( ph  ->  ( K  =  M  ->  (  seq M
(  .+  ,  F
) `  K )  =  Z ) )
30 eluzel2 9181 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3113, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
3231adantr 272 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
33 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
3420adantlr 464 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
3522adantlr 464 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3632, 33, 34, 35seq3m1 10082 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
3724adantr 272 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  K )  =  Z )
3837oveq2d 5722 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z ) )
39 oveq1 5713 . . . . . . . . 9  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( x  .+  Z )  =  ( (  seq M ( 
.+  ,  F ) `
 ( K  - 
1 ) )  .+  Z ) )
4039eqeq1d 2108 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( ( x 
.+  Z )  =  Z  <->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
41 seqz.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
4241ralrimiva 2464 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
4342adantr 272 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
44 eqid 2100 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
4544, 32, 34, 35seqf 10075 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S )
46 eluzp1m1 9199 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
4731, 46sylan 279 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M )
)
4845, 47ffvelrnd 5488 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  e.  S )
4940, 43, 48rspcdva 2749 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z )
5036, 38, 493eqtrd 2136 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  Z )
5150ex 114 . . . . 5  |-  ( ph  ->  ( K  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  Z ) )
52 uzp1 9209 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  =  M  \/  K  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
5313, 52syl 14 . . . . 5  |-  ( ph  ->  ( K  =  M  \/  K  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5429, 51, 53mpjaod 679 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  Z )
5554a1i 9 . . 3  |-  ( K  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  K )  =  Z ) )
56 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  K )
)
5713adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
58 uztrn 9192 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
5956, 57, 58syl2anc 406 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  M )
)
6020adantlr 464 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6122adantlr 464 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6259, 60, 61seq3p1 10076 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
6362adantr 272 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
64 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )
6564oveq1d 5721 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  =  ( Z  .+  ( F `  ( k  +  1 ) ) ) )
66 oveq2 5714 . . . . . . . . . 10  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  ( k  +  1 ) ) ) )
6766eqeq1d 2108 . . . . . . . . 9  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  (
( Z  .+  x
)  =  Z  <->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z ) )
68 seqz.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
6968ralrimiva 2464 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
7069adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
71 fveq2 5353 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
7271eleq1d 2168 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
7320ralrimiva 2464 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
7473adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
75 peano2uz 9228 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
7659, 75syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
7772, 74, 76rspcdva 2749 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  e.  S
)
7867, 70, 77rspcdva 2749 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z )
7978adantr 272 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( Z  .+  ( F `  ( k  +  1 ) ) )  =  Z )
8063, 65, 793eqtrd 2136 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z )
8180ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
8281expcom 115 . . . 4  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  =  Z  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
8382a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z ) ) )
845, 7, 9, 11, 55, 83uzind4 9233 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z ) )
853, 84mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 670    = wceq 1299    e. wcel 1448   A.wral 2375   ` cfv 5059  (class class class)co 5706   1c1 7501    + caddc 7503    - cmin 7804   ZZcz 8906   ZZ>=cuz 9176   ...cfz 9631    seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-seqfrec 10060
This theorem is referenced by:  bcval5  10350
  Copyright terms: Public domain W3C validator