ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3z Unicode version

Theorem seq3z 10620
Description: If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seq3homo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3homo.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seqz.3  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
seqz.4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
seqz.5  |-  ( ph  ->  K  e.  ( M ... N ) )
seqz.7  |-  ( ph  ->  ( F `  K
)  =  Z )
Assertion
Ref Expression
seq3z  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y, F   
x, M, y    x, N, y    ph, x, y   
x, K, y    x,  .+ , y    x, S, y   
x, Z, y

Proof of Theorem seq3z
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqz.5 . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzuz3 10097 . . 3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
4 fveqeq2 5567 . . . 4  |-  ( w  =  K  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) )
54imbi2d 230 . . 3  |-  ( w  =  K  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) ) )
6 fveqeq2 5567 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) )
76imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) ) )
8 fveqeq2 5567 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
98imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
10 fveqeq2 5567 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
1110imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) ) )
12 elfzuz 10096 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
131, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
14 eluzelz 9610 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
16 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  K )
)
1713adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
18 uztrn 9618 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
1916, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  M )
)
20 seq3homo.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2119, 20syldan 282 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
22 seq3homo.1 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2315, 21, 22seq3-1 10554 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
24 seqz.7 . . . . . . 7  |-  ( ph  ->  ( F `  K
)  =  Z )
2523, 24eqtrd 2229 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  Z )
26 seqeq1 10542 . . . . . . . 8  |-  ( K  =  M  ->  seq K (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2726fveq1d 5560 . . . . . . 7  |-  ( K  =  M  ->  (  seq K (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
2827eqeq1d 2205 . . . . . 6  |-  ( K  =  M  ->  (
(  seq K (  .+  ,  F ) `  K
)  =  Z  <->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) )
2925, 28syl5ibcom 155 . . . . 5  |-  ( ph  ->  ( K  =  M  ->  (  seq M
(  .+  ,  F
) `  K )  =  Z ) )
30 eluzel2 9606 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3113, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
3231adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
33 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
3420adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
3522adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3632, 33, 34, 35seq3m1 10565 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
3724adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  K )  =  Z )
3837oveq2d 5938 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z ) )
39 oveq1 5929 . . . . . . . . 9  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( x  .+  Z )  =  ( (  seq M ( 
.+  ,  F ) `
 ( K  - 
1 ) )  .+  Z ) )
4039eqeq1d 2205 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( ( x 
.+  Z )  =  Z  <->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
41 seqz.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
4241ralrimiva 2570 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
4342adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
44 eqid 2196 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
4544, 32, 34, 35seqf 10556 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S )
46 eluzp1m1 9625 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
4731, 46sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M )
)
4845, 47ffvelcdmd 5698 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  e.  S )
4940, 43, 48rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z )
5036, 38, 493eqtrd 2233 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  Z )
5150ex 115 . . . . 5  |-  ( ph  ->  ( K  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  Z ) )
52 uzp1 9635 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  =  M  \/  K  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
5313, 52syl 14 . . . . 5  |-  ( ph  ->  ( K  =  M  \/  K  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5429, 51, 53mpjaod 719 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  Z )
5554a1i 9 . . 3  |-  ( K  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  K )  =  Z ) )
56 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  K )
)
5713adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
58 uztrn 9618 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
5956, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  M )
)
6020adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6122adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6259, 60, 61seq3p1 10557 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
6362adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
64 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )
6564oveq1d 5937 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  =  ( Z  .+  ( F `  ( k  +  1 ) ) ) )
66 oveq2 5930 . . . . . . . . . 10  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  ( k  +  1 ) ) ) )
6766eqeq1d 2205 . . . . . . . . 9  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  (
( Z  .+  x
)  =  Z  <->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z ) )
68 seqz.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
6968ralrimiva 2570 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
7069adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
71 fveq2 5558 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
7271eleq1d 2265 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
7320ralrimiva 2570 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
7473adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
75 peano2uz 9657 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
7659, 75syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
7772, 74, 76rspcdva 2873 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  e.  S
)
7867, 70, 77rspcdva 2873 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z )
7978adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( Z  .+  ( F `  ( k  +  1 ) ) )  =  Z )
8063, 65, 793eqtrd 2233 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z )
8180ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
8281expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  =  Z  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
8382a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z ) ) )
845, 7, 9, 11, 55, 83uzind4 9662 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z ) )
853, 84mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882    - cmin 8197   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540
This theorem is referenced by:  bcval5  10855  lgsne0  15279
  Copyright terms: Public domain W3C validator