Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3z | Unicode version |
Description: If the operation has an absorbing element (a.k.a. zero element), then any sequence containing a evaluates to . (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
Ref | Expression |
---|---|
seq3homo.1 | |
seq3homo.2 | |
seqz.3 | |
seqz.4 | |
seqz.5 | |
seqz.7 |
Ref | Expression |
---|---|
seq3z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqz.5 | . . 3 | |
2 | elfzuz3 9978 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fveqeq2 5505 | . . . 4 | |
5 | 4 | imbi2d 229 | . . 3 |
6 | fveqeq2 5505 | . . . 4 | |
7 | 6 | imbi2d 229 | . . 3 |
8 | fveqeq2 5505 | . . . 4 | |
9 | 8 | imbi2d 229 | . . 3 |
10 | fveqeq2 5505 | . . . 4 | |
11 | 10 | imbi2d 229 | . . 3 |
12 | elfzuz 9977 | . . . . . . . . . 10 | |
13 | 1, 12 | syl 14 | . . . . . . . . 9 |
14 | eluzelz 9496 | . . . . . . . . 9 | |
15 | 13, 14 | syl 14 | . . . . . . . 8 |
16 | simpr 109 | . . . . . . . . . 10 | |
17 | 13 | adantr 274 | . . . . . . . . . 10 |
18 | uztrn 9503 | . . . . . . . . . 10 | |
19 | 16, 17, 18 | syl2anc 409 | . . . . . . . . 9 |
20 | seq3homo.2 | . . . . . . . . 9 | |
21 | 19, 20 | syldan 280 | . . . . . . . 8 |
22 | seq3homo.1 | . . . . . . . 8 | |
23 | 15, 21, 22 | seq3-1 10416 | . . . . . . 7 |
24 | seqz.7 | . . . . . . 7 | |
25 | 23, 24 | eqtrd 2203 | . . . . . 6 |
26 | seqeq1 10404 | . . . . . . . 8 | |
27 | 26 | fveq1d 5498 | . . . . . . 7 |
28 | 27 | eqeq1d 2179 | . . . . . 6 |
29 | 25, 28 | syl5ibcom 154 | . . . . 5 |
30 | eluzel2 9492 | . . . . . . . . . 10 | |
31 | 13, 30 | syl 14 | . . . . . . . . 9 |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | simpr 109 | . . . . . . . 8 | |
34 | 20 | adantlr 474 | . . . . . . . 8 |
35 | 22 | adantlr 474 | . . . . . . . 8 |
36 | 32, 33, 34, 35 | seq3m1 10424 | . . . . . . 7 |
37 | 24 | adantr 274 | . . . . . . . 8 |
38 | 37 | oveq2d 5869 | . . . . . . 7 |
39 | oveq1 5860 | . . . . . . . . 9 | |
40 | 39 | eqeq1d 2179 | . . . . . . . 8 |
41 | seqz.4 | . . . . . . . . . 10 | |
42 | 41 | ralrimiva 2543 | . . . . . . . . 9 |
43 | 42 | adantr 274 | . . . . . . . 8 |
44 | eqid 2170 | . . . . . . . . . 10 | |
45 | 44, 32, 34, 35 | seqf 10417 | . . . . . . . . 9 |
46 | eluzp1m1 9510 | . . . . . . . . . 10 | |
47 | 31, 46 | sylan 281 | . . . . . . . . 9 |
48 | 45, 47 | ffvelrnd 5632 | . . . . . . . 8 |
49 | 40, 43, 48 | rspcdva 2839 | . . . . . . 7 |
50 | 36, 38, 49 | 3eqtrd 2207 | . . . . . 6 |
51 | 50 | ex 114 | . . . . 5 |
52 | uzp1 9520 | . . . . . 6 | |
53 | 13, 52 | syl 14 | . . . . 5 |
54 | 29, 51, 53 | mpjaod 713 | . . . 4 |
55 | 54 | a1i 9 | . . 3 |
56 | simpr 109 | . . . . . . . . . 10 | |
57 | 13 | adantr 274 | . . . . . . . . . 10 |
58 | uztrn 9503 | . . . . . . . . . 10 | |
59 | 56, 57, 58 | syl2anc 409 | . . . . . . . . 9 |
60 | 20 | adantlr 474 | . . . . . . . . 9 |
61 | 22 | adantlr 474 | . . . . . . . . 9 |
62 | 59, 60, 61 | seq3p1 10418 | . . . . . . . 8 |
63 | 62 | adantr 274 | . . . . . . 7 |
64 | simpr 109 | . . . . . . . 8 | |
65 | 64 | oveq1d 5868 | . . . . . . 7 |
66 | oveq2 5861 | . . . . . . . . . 10 | |
67 | 66 | eqeq1d 2179 | . . . . . . . . 9 |
68 | seqz.3 | . . . . . . . . . . 11 | |
69 | 68 | ralrimiva 2543 | . . . . . . . . . 10 |
70 | 69 | adantr 274 | . . . . . . . . 9 |
71 | fveq2 5496 | . . . . . . . . . . 11 | |
72 | 71 | eleq1d 2239 | . . . . . . . . . 10 |
73 | 20 | ralrimiva 2543 | . . . . . . . . . . 11 |
74 | 73 | adantr 274 | . . . . . . . . . 10 |
75 | peano2uz 9542 | . . . . . . . . . . 11 | |
76 | 59, 75 | syl 14 | . . . . . . . . . 10 |
77 | 72, 74, 76 | rspcdva 2839 | . . . . . . . . 9 |
78 | 67, 70, 77 | rspcdva 2839 | . . . . . . . 8 |
79 | 78 | adantr 274 | . . . . . . 7 |
80 | 63, 65, 79 | 3eqtrd 2207 | . . . . . 6 |
81 | 80 | ex 114 | . . . . 5 |
82 | 81 | expcom 115 | . . . 4 |
83 | 82 | a2d 26 | . . 3 |
84 | 5, 7, 9, 11, 55, 83 | uzind4 9547 | . 2 |
85 | 3, 84 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 wral 2448 cfv 5198 (class class class)co 5853 c1 7775 caddc 7777 cmin 8090 cz 9212 cuz 9487 cfz 9965 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-seqfrec 10402 |
This theorem is referenced by: bcval5 10697 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |