Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3z | Unicode version |
Description: If the operation has an absorbing element (a.k.a. zero element), then any sequence containing a evaluates to . (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
Ref | Expression |
---|---|
seq3homo.1 | |
seq3homo.2 | |
seqz.3 | |
seqz.4 | |
seqz.5 | |
seqz.7 |
Ref | Expression |
---|---|
seq3z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqz.5 | . . 3 | |
2 | elfzuz3 9957 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fveqeq2 5495 | . . . 4 | |
5 | 4 | imbi2d 229 | . . 3 |
6 | fveqeq2 5495 | . . . 4 | |
7 | 6 | imbi2d 229 | . . 3 |
8 | fveqeq2 5495 | . . . 4 | |
9 | 8 | imbi2d 229 | . . 3 |
10 | fveqeq2 5495 | . . . 4 | |
11 | 10 | imbi2d 229 | . . 3 |
12 | elfzuz 9956 | . . . . . . . . . 10 | |
13 | 1, 12 | syl 14 | . . . . . . . . 9 |
14 | eluzelz 9475 | . . . . . . . . 9 | |
15 | 13, 14 | syl 14 | . . . . . . . 8 |
16 | simpr 109 | . . . . . . . . . 10 | |
17 | 13 | adantr 274 | . . . . . . . . . 10 |
18 | uztrn 9482 | . . . . . . . . . 10 | |
19 | 16, 17, 18 | syl2anc 409 | . . . . . . . . 9 |
20 | seq3homo.2 | . . . . . . . . 9 | |
21 | 19, 20 | syldan 280 | . . . . . . . 8 |
22 | seq3homo.1 | . . . . . . . 8 | |
23 | 15, 21, 22 | seq3-1 10395 | . . . . . . 7 |
24 | seqz.7 | . . . . . . 7 | |
25 | 23, 24 | eqtrd 2198 | . . . . . 6 |
26 | seqeq1 10383 | . . . . . . . 8 | |
27 | 26 | fveq1d 5488 | . . . . . . 7 |
28 | 27 | eqeq1d 2174 | . . . . . 6 |
29 | 25, 28 | syl5ibcom 154 | . . . . 5 |
30 | eluzel2 9471 | . . . . . . . . . 10 | |
31 | 13, 30 | syl 14 | . . . . . . . . 9 |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | simpr 109 | . . . . . . . 8 | |
34 | 20 | adantlr 469 | . . . . . . . 8 |
35 | 22 | adantlr 469 | . . . . . . . 8 |
36 | 32, 33, 34, 35 | seq3m1 10403 | . . . . . . 7 |
37 | 24 | adantr 274 | . . . . . . . 8 |
38 | 37 | oveq2d 5858 | . . . . . . 7 |
39 | oveq1 5849 | . . . . . . . . 9 | |
40 | 39 | eqeq1d 2174 | . . . . . . . 8 |
41 | seqz.4 | . . . . . . . . . 10 | |
42 | 41 | ralrimiva 2539 | . . . . . . . . 9 |
43 | 42 | adantr 274 | . . . . . . . 8 |
44 | eqid 2165 | . . . . . . . . . 10 | |
45 | 44, 32, 34, 35 | seqf 10396 | . . . . . . . . 9 |
46 | eluzp1m1 9489 | . . . . . . . . . 10 | |
47 | 31, 46 | sylan 281 | . . . . . . . . 9 |
48 | 45, 47 | ffvelrnd 5621 | . . . . . . . 8 |
49 | 40, 43, 48 | rspcdva 2835 | . . . . . . 7 |
50 | 36, 38, 49 | 3eqtrd 2202 | . . . . . 6 |
51 | 50 | ex 114 | . . . . 5 |
52 | uzp1 9499 | . . . . . 6 | |
53 | 13, 52 | syl 14 | . . . . 5 |
54 | 29, 51, 53 | mpjaod 708 | . . . 4 |
55 | 54 | a1i 9 | . . 3 |
56 | simpr 109 | . . . . . . . . . 10 | |
57 | 13 | adantr 274 | . . . . . . . . . 10 |
58 | uztrn 9482 | . . . . . . . . . 10 | |
59 | 56, 57, 58 | syl2anc 409 | . . . . . . . . 9 |
60 | 20 | adantlr 469 | . . . . . . . . 9 |
61 | 22 | adantlr 469 | . . . . . . . . 9 |
62 | 59, 60, 61 | seq3p1 10397 | . . . . . . . 8 |
63 | 62 | adantr 274 | . . . . . . 7 |
64 | simpr 109 | . . . . . . . 8 | |
65 | 64 | oveq1d 5857 | . . . . . . 7 |
66 | oveq2 5850 | . . . . . . . . . 10 | |
67 | 66 | eqeq1d 2174 | . . . . . . . . 9 |
68 | seqz.3 | . . . . . . . . . . 11 | |
69 | 68 | ralrimiva 2539 | . . . . . . . . . 10 |
70 | 69 | adantr 274 | . . . . . . . . 9 |
71 | fveq2 5486 | . . . . . . . . . . 11 | |
72 | 71 | eleq1d 2235 | . . . . . . . . . 10 |
73 | 20 | ralrimiva 2539 | . . . . . . . . . . 11 |
74 | 73 | adantr 274 | . . . . . . . . . 10 |
75 | peano2uz 9521 | . . . . . . . . . . 11 | |
76 | 59, 75 | syl 14 | . . . . . . . . . 10 |
77 | 72, 74, 76 | rspcdva 2835 | . . . . . . . . 9 |
78 | 67, 70, 77 | rspcdva 2835 | . . . . . . . 8 |
79 | 78 | adantr 274 | . . . . . . 7 |
80 | 63, 65, 79 | 3eqtrd 2202 | . . . . . 6 |
81 | 80 | ex 114 | . . . . 5 |
82 | 81 | expcom 115 | . . . 4 |
83 | 82 | a2d 26 | . . 3 |
84 | 5, 7, 9, 11, 55, 83 | uzind4 9526 | . 2 |
85 | 3, 84 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wral 2444 cfv 5188 (class class class)co 5842 c1 7754 caddc 7756 cmin 8069 cz 9191 cuz 9466 cfz 9944 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 |
This theorem is referenced by: bcval5 10676 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |