ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmghmrn Unicode version

Theorem ghmghmrn 13800
Description: A group homomorphism from  G to  H is also a group homomorphism from  G to its image in  H. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
ghmghmrn.u  |-  U  =  ( Ts  ran  F )
Assertion
Ref Expression
ghmghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S  GrpHom  U ) )

Proof of Theorem ghmghmrn
StepHypRef Expression
1 ghmrn 13794 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
2 ssid 3244 . . . 4  |-  ran  F  C_ 
ran  F
3 ghmghmrn.u . . . . 5  |-  U  =  ( Ts  ran  F )
43resghm2b 13799 . . . 4  |-  ( ( ran  F  e.  (SubGrp `  T )  /\  ran  F 
C_  ran  F )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
52, 4mpan2 425 . . 3  |-  ( ran 
F  e.  (SubGrp `  T )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
65biimpd 144 . 2  |-  ( ran 
F  e.  (SubGrp `  T )  ->  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S  GrpHom  U ) ) )
71, 6mpcom 36 1  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   ran crn 4720   ` cfv 5318  (class class class)co 6001   ↾s cress 13033  SubGrpcsubg 13704    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492  df-submnd 13493  df-grp 13536  df-minusg 13537  df-subg 13707  df-ghm 13778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator