ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmrn Unicode version

Theorem ghmrn 13794
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)

Proof of Theorem ghmrn
Dummy variables  a  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2229 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
31, 2ghmf 13784 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
43frnd 5483 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  C_  ( Base `  T )
)
5 ghmgrp1 13782 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
6 eqid 2229 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
71, 6grpidcl 13562 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
85, 7syl 14 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  (
Base `  S )
)
93fdmd 5480 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =  ( Base `  S
) )
108, 9eleqtrrd 2309 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  dom  F )
11 elex2 2816 . . . 4  |-  ( ( 0g `  S )  e.  dom  F  ->  E. j  j  e.  dom  F )
1210, 11syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  dom  F
)
13 dmmrnm 4943 . . 3  |-  ( E. j  j  e.  dom  F  <->  E. j  j  e.  ran  F )
1412, 13sylib 122 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  ran  F
)
15 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
16 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
171, 15, 16ghmlin 13785 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  =  ( ( F `  c ) ( +g  `  T
) ( F `  a ) ) )
183ffnd 5474 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  ( Base `  S )
)
19183ad2ant1 1042 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  F  Fn  ( Base `  S )
)
201, 15grpcl 13541 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S )  /\  a  e.  ( Base `  S
) )  ->  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )
215, 20syl3an1 1304 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( c
( +g  `  S ) a )  e.  (
Base `  S )
)
22 fnfvelrn 5767 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )  ->  ( F `  ( c
( +g  `  S ) a ) )  e. 
ran  F )
2319, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  e.  ran  F
)
2417, 23eqeltrrd 2307 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F )
25243expia 1229 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
a  e.  ( Base `  S )  ->  (
( F `  c
) ( +g  `  T
) ( F `  a ) )  e. 
ran  F ) )
2625ralrimiv 2602 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F )
27 oveq2 6009 . . . . . . . . . 10  |-  ( b  =  ( F `  a )  ->  (
( F `  c
) ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) ( F `
 a ) ) )
2827eleq1d 2298 . . . . . . . . 9  |-  ( b  =  ( F `  a )  ->  (
( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
2928ralrn 5773 . . . . . . . 8  |-  ( F  Fn  ( Base `  S
)  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3018, 29syl 14 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3130adantr 276 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3226, 31mpbird 167 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F )
33 eqid 2229 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
34 eqid 2229 . . . . . . 7  |-  ( invg `  T )  =  ( invg `  T )
351, 33, 34ghminv 13787 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  =  ( ( invg `  T ) `
 ( F `  c ) ) )
3618adantr 276 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  F  Fn  ( Base `  S
) )
371, 33grpinvcl 13581 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  c
)  e.  ( Base `  S ) )
385, 37sylan 283 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )
39 fnfvelrn 5767 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )  -> 
( F `  (
( invg `  S ) `  c
) )  e.  ran  F )
4036, 38, 39syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  e.  ran  F )
4135, 40eqeltrrd 2307 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
)
4232, 41jca 306 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4342ralrimiva 2603 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. c  e.  ( Base `  S
) ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
44 oveq1 6008 . . . . . . . 8  |-  ( a  =  ( F `  c )  ->  (
a ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) b ) )
4544eleq1d 2298 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( a ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) b )  e.  ran  F ) )
4645ralbidv 2530 . . . . . 6  |-  ( a  =  ( F `  c )  ->  ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  <->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F ) )
47 fveq2 5627 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( invg `  T ) `  a
)  =  ( ( invg `  T
) `  ( F `  c ) ) )
4847eleq1d 2298 . . . . . 6  |-  ( a  =  ( F `  c )  ->  (
( ( invg `  T ) `  a
)  e.  ran  F  <->  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4946, 48anbi12d 473 . . . . 5  |-  ( a  =  ( F `  c )  ->  (
( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
)  <->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5049ralrn 5773 . . . 4  |-  ( F  Fn  ( Base `  S
)  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5118, 50syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5243, 51mpbird 167 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) )
53 ghmgrp2 13783 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
542, 16, 34issubg2m 13726 . . 3  |-  ( T  e.  Grp  ->  ( ran  F  e.  (SubGrp `  T )  <->  ( ran  F 
C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
5553, 54syl 14 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ran  F  e.  (SubGrp `  T
)  <->  ( ran  F  C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
564, 14, 52, 55mpbir3and 1204 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   dom cdm 4719   ran crn 4720    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-ghm 13778
This theorem is referenced by:  ghmghmrn  13800  ghmima  13802
  Copyright terms: Public domain W3C validator