ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmrn Unicode version

Theorem ghmrn 13463
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)

Proof of Theorem ghmrn
Dummy variables  a  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2196 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
31, 2ghmf 13453 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
43frnd 5420 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  C_  ( Base `  T )
)
5 ghmgrp1 13451 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
6 eqid 2196 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
71, 6grpidcl 13231 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
85, 7syl 14 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  (
Base `  S )
)
93fdmd 5417 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =  ( Base `  S
) )
108, 9eleqtrrd 2276 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  dom  F )
11 elex2 2779 . . . 4  |-  ( ( 0g `  S )  e.  dom  F  ->  E. j  j  e.  dom  F )
1210, 11syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  dom  F
)
13 dmmrnm 4886 . . 3  |-  ( E. j  j  e.  dom  F  <->  E. j  j  e.  ran  F )
1412, 13sylib 122 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  ran  F
)
15 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
16 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
171, 15, 16ghmlin 13454 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  =  ( ( F `  c ) ( +g  `  T
) ( F `  a ) ) )
183ffnd 5411 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  ( Base `  S )
)
19183ad2ant1 1020 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  F  Fn  ( Base `  S )
)
201, 15grpcl 13210 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S )  /\  a  e.  ( Base `  S
) )  ->  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )
215, 20syl3an1 1282 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( c
( +g  `  S ) a )  e.  (
Base `  S )
)
22 fnfvelrn 5697 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )  ->  ( F `  ( c
( +g  `  S ) a ) )  e. 
ran  F )
2319, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  e.  ran  F
)
2417, 23eqeltrrd 2274 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F )
25243expia 1207 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
a  e.  ( Base `  S )  ->  (
( F `  c
) ( +g  `  T
) ( F `  a ) )  e. 
ran  F ) )
2625ralrimiv 2569 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F )
27 oveq2 5933 . . . . . . . . . 10  |-  ( b  =  ( F `  a )  ->  (
( F `  c
) ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) ( F `
 a ) ) )
2827eleq1d 2265 . . . . . . . . 9  |-  ( b  =  ( F `  a )  ->  (
( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
2928ralrn 5703 . . . . . . . 8  |-  ( F  Fn  ( Base `  S
)  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3018, 29syl 14 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3130adantr 276 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3226, 31mpbird 167 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F )
33 eqid 2196 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
34 eqid 2196 . . . . . . 7  |-  ( invg `  T )  =  ( invg `  T )
351, 33, 34ghminv 13456 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  =  ( ( invg `  T ) `
 ( F `  c ) ) )
3618adantr 276 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  F  Fn  ( Base `  S
) )
371, 33grpinvcl 13250 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  c
)  e.  ( Base `  S ) )
385, 37sylan 283 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )
39 fnfvelrn 5697 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )  -> 
( F `  (
( invg `  S ) `  c
) )  e.  ran  F )
4036, 38, 39syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  e.  ran  F )
4135, 40eqeltrrd 2274 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
)
4232, 41jca 306 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4342ralrimiva 2570 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. c  e.  ( Base `  S
) ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
44 oveq1 5932 . . . . . . . 8  |-  ( a  =  ( F `  c )  ->  (
a ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) b ) )
4544eleq1d 2265 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( a ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) b )  e.  ran  F ) )
4645ralbidv 2497 . . . . . 6  |-  ( a  =  ( F `  c )  ->  ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  <->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F ) )
47 fveq2 5561 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( invg `  T ) `  a
)  =  ( ( invg `  T
) `  ( F `  c ) ) )
4847eleq1d 2265 . . . . . 6  |-  ( a  =  ( F `  c )  ->  (
( ( invg `  T ) `  a
)  e.  ran  F  <->  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4946, 48anbi12d 473 . . . . 5  |-  ( a  =  ( F `  c )  ->  (
( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
)  <->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5049ralrn 5703 . . . 4  |-  ( F  Fn  ( Base `  S
)  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5118, 50syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5243, 51mpbird 167 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) )
53 ghmgrp2 13452 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
542, 16, 34issubg2m 13395 . . 3  |-  ( T  e.  Grp  ->  ( ran  F  e.  (SubGrp `  T )  <->  ( ran  F 
C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
5553, 54syl 14 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ran  F  e.  (SubGrp `  T
)  <->  ( ran  F  C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
564, 14, 52, 55mpbir3and 1182 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   dom cdm 4664   ran crn 4665    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202   invgcminusg 13203  SubGrpcsubg 13373    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-ghm 13447
This theorem is referenced by:  ghmghmrn  13469  ghmima  13471
  Copyright terms: Public domain W3C validator