ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmrn Unicode version

Theorem ghmrn 13387
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)

Proof of Theorem ghmrn
Dummy variables  a  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2196 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
31, 2ghmf 13377 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
43frnd 5417 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  C_  ( Base `  T )
)
5 ghmgrp1 13375 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
6 eqid 2196 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
71, 6grpidcl 13161 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
85, 7syl 14 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  (
Base `  S )
)
93fdmd 5414 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =  ( Base `  S
) )
108, 9eleqtrrd 2276 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  dom  F )
11 elex2 2779 . . . 4  |-  ( ( 0g `  S )  e.  dom  F  ->  E. j  j  e.  dom  F )
1210, 11syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  dom  F
)
13 dmmrnm 4885 . . 3  |-  ( E. j  j  e.  dom  F  <->  E. j  j  e.  ran  F )
1412, 13sylib 122 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  ran  F
)
15 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
16 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
171, 15, 16ghmlin 13378 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  =  ( ( F `  c ) ( +g  `  T
) ( F `  a ) ) )
183ffnd 5408 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  ( Base `  S )
)
19183ad2ant1 1020 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  F  Fn  ( Base `  S )
)
201, 15grpcl 13140 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S )  /\  a  e.  ( Base `  S
) )  ->  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )
215, 20syl3an1 1282 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( c
( +g  `  S ) a )  e.  (
Base `  S )
)
22 fnfvelrn 5694 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )  ->  ( F `  ( c
( +g  `  S ) a ) )  e. 
ran  F )
2319, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  e.  ran  F
)
2417, 23eqeltrrd 2274 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F )
25243expia 1207 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
a  e.  ( Base `  S )  ->  (
( F `  c
) ( +g  `  T
) ( F `  a ) )  e. 
ran  F ) )
2625ralrimiv 2569 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F )
27 oveq2 5930 . . . . . . . . . 10  |-  ( b  =  ( F `  a )  ->  (
( F `  c
) ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) ( F `
 a ) ) )
2827eleq1d 2265 . . . . . . . . 9  |-  ( b  =  ( F `  a )  ->  (
( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
2928ralrn 5700 . . . . . . . 8  |-  ( F  Fn  ( Base `  S
)  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3018, 29syl 14 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3130adantr 276 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3226, 31mpbird 167 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F )
33 eqid 2196 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
34 eqid 2196 . . . . . . 7  |-  ( invg `  T )  =  ( invg `  T )
351, 33, 34ghminv 13380 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  =  ( ( invg `  T ) `
 ( F `  c ) ) )
3618adantr 276 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  F  Fn  ( Base `  S
) )
371, 33grpinvcl 13180 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  c
)  e.  ( Base `  S ) )
385, 37sylan 283 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )
39 fnfvelrn 5694 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )  -> 
( F `  (
( invg `  S ) `  c
) )  e.  ran  F )
4036, 38, 39syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  e.  ran  F )
4135, 40eqeltrrd 2274 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
)
4232, 41jca 306 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4342ralrimiva 2570 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. c  e.  ( Base `  S
) ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
44 oveq1 5929 . . . . . . . 8  |-  ( a  =  ( F `  c )  ->  (
a ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) b ) )
4544eleq1d 2265 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( a ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) b )  e.  ran  F ) )
4645ralbidv 2497 . . . . . 6  |-  ( a  =  ( F `  c )  ->  ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  <->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F ) )
47 fveq2 5558 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( invg `  T ) `  a
)  =  ( ( invg `  T
) `  ( F `  c ) ) )
4847eleq1d 2265 . . . . . 6  |-  ( a  =  ( F `  c )  ->  (
( ( invg `  T ) `  a
)  e.  ran  F  <->  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4946, 48anbi12d 473 . . . . 5  |-  ( a  =  ( F `  c )  ->  (
( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
)  <->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5049ralrn 5700 . . . 4  |-  ( F  Fn  ( Base `  S
)  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5118, 50syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5243, 51mpbird 167 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) )
53 ghmgrp2 13376 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
542, 16, 34issubg2m 13319 . . 3  |-  ( T  e.  Grp  ->  ( ran  F  e.  (SubGrp `  T )  <->  ( ran  F 
C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
5553, 54syl 14 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ran  F  e.  (SubGrp `  T
)  <->  ( ran  F  C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
564, 14, 52, 55mpbir3and 1182 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   dom cdm 4663   ran crn 4664    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297    GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371
This theorem is referenced by:  ghmghmrn  13393  ghmima  13395
  Copyright terms: Public domain W3C validator