| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmrn | Unicode version | ||
| Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . 4
| |
| 2 | eqid 2196 |
. . . 4
| |
| 3 | 1, 2 | ghmf 13377 |
. . 3
|
| 4 | 3 | frnd 5417 |
. 2
|
| 5 | ghmgrp1 13375 |
. . . . . 6
| |
| 6 | eqid 2196 |
. . . . . . 7
| |
| 7 | 1, 6 | grpidcl 13161 |
. . . . . 6
|
| 8 | 5, 7 | syl 14 |
. . . . 5
|
| 9 | 3 | fdmd 5414 |
. . . . 5
|
| 10 | 8, 9 | eleqtrrd 2276 |
. . . 4
|
| 11 | elex2 2779 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | dmmrnm 4885 |
. . 3
| |
| 14 | 12, 13 | sylib 122 |
. 2
|
| 15 | eqid 2196 |
. . . . . . . . . 10
| |
| 16 | eqid 2196 |
. . . . . . . . . 10
| |
| 17 | 1, 15, 16 | ghmlin 13378 |
. . . . . . . . 9
|
| 18 | 3 | ffnd 5408 |
. . . . . . . . . . 11
|
| 19 | 18 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 20 | 1, 15 | grpcl 13140 |
. . . . . . . . . . 11
|
| 21 | 5, 20 | syl3an1 1282 |
. . . . . . . . . 10
|
| 22 | fnfvelrn 5694 |
. . . . . . . . . 10
| |
| 23 | 19, 21, 22 | syl2anc 411 |
. . . . . . . . 9
|
| 24 | 17, 23 | eqeltrrd 2274 |
. . . . . . . 8
|
| 25 | 24 | 3expia 1207 |
. . . . . . 7
|
| 26 | 25 | ralrimiv 2569 |
. . . . . 6
|
| 27 | oveq2 5930 |
. . . . . . . . . 10
| |
| 28 | 27 | eleq1d 2265 |
. . . . . . . . 9
|
| 29 | 28 | ralrn 5700 |
. . . . . . . 8
|
| 30 | 18, 29 | syl 14 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 26, 31 | mpbird 167 |
. . . . 5
|
| 33 | eqid 2196 |
. . . . . . 7
| |
| 34 | eqid 2196 |
. . . . . . 7
| |
| 35 | 1, 33, 34 | ghminv 13380 |
. . . . . 6
|
| 36 | 18 | adantr 276 |
. . . . . . 7
|
| 37 | 1, 33 | grpinvcl 13180 |
. . . . . . . 8
|
| 38 | 5, 37 | sylan 283 |
. . . . . . 7
|
| 39 | fnfvelrn 5694 |
. . . . . . 7
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 35, 40 | eqeltrrd 2274 |
. . . . 5
|
| 42 | 32, 41 | jca 306 |
. . . 4
|
| 43 | 42 | ralrimiva 2570 |
. . 3
|
| 44 | oveq1 5929 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2265 |
. . . . . . 7
|
| 46 | 45 | ralbidv 2497 |
. . . . . 6
|
| 47 | fveq2 5558 |
. . . . . . 7
| |
| 48 | 47 | eleq1d 2265 |
. . . . . 6
|
| 49 | 46, 48 | anbi12d 473 |
. . . . 5
|
| 50 | 49 | ralrn 5700 |
. . . 4
|
| 51 | 18, 50 | syl 14 |
. . 3
|
| 52 | 43, 51 | mpbird 167 |
. 2
|
| 53 | ghmgrp2 13376 |
. . 3
| |
| 54 | 2, 16, 34 | issubg2m 13319 |
. . 3
|
| 55 | 53, 54 | syl 14 |
. 2
|
| 56 | 4, 14, 52, 55 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-ghm 13371 |
| This theorem is referenced by: ghmghmrn 13393 ghmima 13395 |
| Copyright terms: Public domain | W3C validator |