ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmrn Unicode version

Theorem ghmrn 13593
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)

Proof of Theorem ghmrn
Dummy variables  a  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2205 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
31, 2ghmf 13583 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
43frnd 5435 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  C_  ( Base `  T )
)
5 ghmgrp1 13581 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
6 eqid 2205 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
71, 6grpidcl 13361 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
85, 7syl 14 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  (
Base `  S )
)
93fdmd 5432 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =  ( Base `  S
) )
108, 9eleqtrrd 2285 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( 0g `  S )  e.  dom  F )
11 elex2 2788 . . . 4  |-  ( ( 0g `  S )  e.  dom  F  ->  E. j  j  e.  dom  F )
1210, 11syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  dom  F
)
13 dmmrnm 4897 . . 3  |-  ( E. j  j  e.  dom  F  <->  E. j  j  e.  ran  F )
1412, 13sylib 122 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  E. j 
j  e.  ran  F
)
15 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
16 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
171, 15, 16ghmlin 13584 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  =  ( ( F `  c ) ( +g  `  T
) ( F `  a ) ) )
183ffnd 5426 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  ( Base `  S )
)
19183ad2ant1 1021 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  F  Fn  ( Base `  S )
)
201, 15grpcl 13340 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S )  /\  a  e.  ( Base `  S
) )  ->  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )
215, 20syl3an1 1283 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( c
( +g  `  S ) a )  e.  (
Base `  S )
)
22 fnfvelrn 5712 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )  ->  ( F `  ( c
( +g  `  S ) a ) )  e. 
ran  F )
2319, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  e.  ran  F
)
2417, 23eqeltrrd 2283 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F )
25243expia 1208 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
a  e.  ( Base `  S )  ->  (
( F `  c
) ( +g  `  T
) ( F `  a ) )  e. 
ran  F ) )
2625ralrimiv 2578 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F )
27 oveq2 5952 . . . . . . . . . 10  |-  ( b  =  ( F `  a )  ->  (
( F `  c
) ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) ( F `
 a ) ) )
2827eleq1d 2274 . . . . . . . . 9  |-  ( b  =  ( F `  a )  ->  (
( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
2928ralrn 5718 . . . . . . . 8  |-  ( F  Fn  ( Base `  S
)  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3018, 29syl 14 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3130adantr 276 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3226, 31mpbird 167 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F )
33 eqid 2205 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
34 eqid 2205 . . . . . . 7  |-  ( invg `  T )  =  ( invg `  T )
351, 33, 34ghminv 13586 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  =  ( ( invg `  T ) `
 ( F `  c ) ) )
3618adantr 276 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  F  Fn  ( Base `  S
) )
371, 33grpinvcl 13380 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  c
)  e.  ( Base `  S ) )
385, 37sylan 283 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )
39 fnfvelrn 5712 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  (
( invg `  S ) `  c
)  e.  ( Base `  S ) )  -> 
( F `  (
( invg `  S ) `  c
) )  e.  ran  F )
4036, 38, 39syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 c ) )  e.  ran  F )
4135, 40eqeltrrd 2283 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
)
4232, 41jca 306 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4342ralrimiva 2579 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. c  e.  ( Base `  S
) ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
44 oveq1 5951 . . . . . . . 8  |-  ( a  =  ( F `  c )  ->  (
a ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) b ) )
4544eleq1d 2274 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( a ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) b )  e.  ran  F ) )
4645ralbidv 2506 . . . . . 6  |-  ( a  =  ( F `  c )  ->  ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  <->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F ) )
47 fveq2 5576 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( invg `  T ) `  a
)  =  ( ( invg `  T
) `  ( F `  c ) ) )
4847eleq1d 2274 . . . . . 6  |-  ( a  =  ( F `  c )  ->  (
( ( invg `  T ) `  a
)  e.  ran  F  <->  ( ( invg `  T ) `  ( F `  c )
)  e.  ran  F
) )
4946, 48anbi12d 473 . . . . 5  |-  ( a  =  ( F `  c )  ->  (
( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
)  <->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5049ralrn 5718 . . . 4  |-  ( F  Fn  ( Base `  S
)  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5118, 50syl 14 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( invg `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5243, 51mpbird 167 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) )
53 ghmgrp2 13582 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
542, 16, 34issubg2m 13525 . . 3  |-  ( T  e.  Grp  ->  ( ran  F  e.  (SubGrp `  T )  <->  ( ran  F 
C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
5553, 54syl 14 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ran  F  e.  (SubGrp `  T
)  <->  ( ran  F  C_  ( Base `  T
)  /\  E. j 
j  e.  ran  F  /\  A. a  e.  ran  F ( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( invg `  T ) `  a
)  e.  ran  F
) ) ) )
564, 14, 52, 55mpbir3and 1183 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   dom cdm 4675   ran crn 4676    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503    GrpHom cghm 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-ghm 13577
This theorem is referenced by:  ghmghmrn  13599  ghmima  13601
  Copyright terms: Public domain W3C validator