ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpropd Unicode version

Theorem ghmpropd 13734
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
ghmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
ghmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
ghmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
ghmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
ghmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
Assertion
Ref Expression
ghmpropd  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem ghmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 ghmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ghmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 13464 . . . . 5  |-  ( ph  ->  ( J  e.  Grp  <->  L  e.  Grp ) )
5 ghmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
6 ghmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
7 ghmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
85, 6, 7grppropd 13464 . . . . 5  |-  ( ph  ->  ( K  e.  Grp  <->  M  e.  Grp ) )
94, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Grp  /\  K  e.  Grp )  <->  ( L  e. 
Grp  /\  M  e.  Grp ) ) )
101, 5, 2, 6, 3, 7mhmpropd 13413 . . . . 5  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
1110eleq2d 2277 . . . 4  |-  ( ph  ->  ( f  e.  ( J MndHom  K )  <->  f  e.  ( L MndHom  M ) ) )
129, 11anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) ) )
13 ghmgrp1 13696 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  J  e.  Grp )
14 ghmgrp2 13697 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  K  e.  Grp )
1513, 14jca 306 . . . 4  |-  ( f  e.  ( J  GrpHom  K )  ->  ( J  e.  Grp  /\  K  e. 
Grp ) )
16 ghmmhmb 13705 . . . . 5  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( J  GrpHom  K )  =  ( J MndHom  K
) )
1716eleq2d 2277 . . . 4  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( J MndHom  K ) ) )
1815, 17biadanii 613 . . 3  |-  ( f  e.  ( J  GrpHom  K )  <->  ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) ) )
19 ghmgrp1 13696 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  L  e.  Grp )
20 ghmgrp2 13697 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  M  e.  Grp )
2119, 20jca 306 . . . 4  |-  ( f  e.  ( L  GrpHom  M )  ->  ( L  e.  Grp  /\  M  e. 
Grp ) )
22 ghmmhmb 13705 . . . . 5  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( L  GrpHom  M )  =  ( L MndHom  M
) )
2322eleq2d 2277 . . . 4  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( f  e.  ( L  GrpHom  M )  <->  f  e.  ( L MndHom  M ) ) )
2421, 23biadanii 613 . . 3  |-  ( f  e.  ( L  GrpHom  M )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) )
2512, 18, 243bitr4g 223 . 2  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2625eqrdv 2205 1  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   MndHom cmhm 13404   Grpcgrp 13447    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-ghm 13692
This theorem is referenced by:  rhmpropd  14131
  Copyright terms: Public domain W3C validator