ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpropd Unicode version

Theorem ghmpropd 13353
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
ghmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
ghmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
ghmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
ghmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
ghmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
Assertion
Ref Expression
ghmpropd  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem ghmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 ghmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ghmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 13089 . . . . 5  |-  ( ph  ->  ( J  e.  Grp  <->  L  e.  Grp ) )
5 ghmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
6 ghmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
7 ghmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
85, 6, 7grppropd 13089 . . . . 5  |-  ( ph  ->  ( K  e.  Grp  <->  M  e.  Grp ) )
94, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Grp  /\  K  e.  Grp )  <->  ( L  e. 
Grp  /\  M  e.  Grp ) ) )
101, 5, 2, 6, 3, 7mhmpropd 13038 . . . . 5  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
1110eleq2d 2263 . . . 4  |-  ( ph  ->  ( f  e.  ( J MndHom  K )  <->  f  e.  ( L MndHom  M ) ) )
129, 11anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) ) )
13 ghmgrp1 13315 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  J  e.  Grp )
14 ghmgrp2 13316 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  K  e.  Grp )
1513, 14jca 306 . . . 4  |-  ( f  e.  ( J  GrpHom  K )  ->  ( J  e.  Grp  /\  K  e. 
Grp ) )
16 ghmmhmb 13324 . . . . 5  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( J  GrpHom  K )  =  ( J MndHom  K
) )
1716eleq2d 2263 . . . 4  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( J MndHom  K ) ) )
1815, 17biadanii 613 . . 3  |-  ( f  e.  ( J  GrpHom  K )  <->  ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) ) )
19 ghmgrp1 13315 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  L  e.  Grp )
20 ghmgrp2 13316 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  M  e.  Grp )
2119, 20jca 306 . . . 4  |-  ( f  e.  ( L  GrpHom  M )  ->  ( L  e.  Grp  /\  M  e. 
Grp ) )
22 ghmmhmb 13324 . . . . 5  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( L  GrpHom  M )  =  ( L MndHom  M
) )
2322eleq2d 2263 . . . 4  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( f  e.  ( L  GrpHom  M )  <->  f  e.  ( L MndHom  M ) ) )
2421, 23biadanii 613 . . 3  |-  ( f  e.  ( L  GrpHom  M )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) )
2512, 18, 243bitr4g 223 . 2  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2625eqrdv 2191 1  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   MndHom cmhm 13029   Grpcgrp 13072    GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311
This theorem is referenced by:  rhmpropd  13750
  Copyright terms: Public domain W3C validator