ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpropd Unicode version

Theorem ghmpropd 13489
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
ghmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
ghmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
ghmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
ghmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
ghmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
Assertion
Ref Expression
ghmpropd  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem ghmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 ghmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ghmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 13219 . . . . 5  |-  ( ph  ->  ( J  e.  Grp  <->  L  e.  Grp ) )
5 ghmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
6 ghmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
7 ghmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
85, 6, 7grppropd 13219 . . . . 5  |-  ( ph  ->  ( K  e.  Grp  <->  M  e.  Grp ) )
94, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Grp  /\  K  e.  Grp )  <->  ( L  e. 
Grp  /\  M  e.  Grp ) ) )
101, 5, 2, 6, 3, 7mhmpropd 13168 . . . . 5  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
1110eleq2d 2266 . . . 4  |-  ( ph  ->  ( f  e.  ( J MndHom  K )  <->  f  e.  ( L MndHom  M ) ) )
129, 11anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) ) )
13 ghmgrp1 13451 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  J  e.  Grp )
14 ghmgrp2 13452 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  K  e.  Grp )
1513, 14jca 306 . . . 4  |-  ( f  e.  ( J  GrpHom  K )  ->  ( J  e.  Grp  /\  K  e. 
Grp ) )
16 ghmmhmb 13460 . . . . 5  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( J  GrpHom  K )  =  ( J MndHom  K
) )
1716eleq2d 2266 . . . 4  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( J MndHom  K ) ) )
1815, 17biadanii 613 . . 3  |-  ( f  e.  ( J  GrpHom  K )  <->  ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) ) )
19 ghmgrp1 13451 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  L  e.  Grp )
20 ghmgrp2 13452 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  M  e.  Grp )
2119, 20jca 306 . . . 4  |-  ( f  e.  ( L  GrpHom  M )  ->  ( L  e.  Grp  /\  M  e. 
Grp ) )
22 ghmmhmb 13460 . . . . 5  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( L  GrpHom  M )  =  ( L MndHom  M
) )
2322eleq2d 2266 . . . 4  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( f  e.  ( L  GrpHom  M )  <->  f  e.  ( L MndHom  M ) ) )
2421, 23biadanii 613 . . 3  |-  ( f  e.  ( L  GrpHom  M )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) )
2512, 18, 243bitr4g 223 . 2  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2625eqrdv 2194 1  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   MndHom cmhm 13159   Grpcgrp 13202    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447
This theorem is referenced by:  rhmpropd  13886
  Copyright terms: Public domain W3C validator