ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpropd Unicode version

Theorem ghmpropd 13239
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
ghmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
ghmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
ghmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
ghmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
ghmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
Assertion
Ref Expression
ghmpropd  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem ghmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 ghmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ghmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 12977 . . . . 5  |-  ( ph  ->  ( J  e.  Grp  <->  L  e.  Grp ) )
5 ghmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
6 ghmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
7 ghmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
85, 6, 7grppropd 12977 . . . . 5  |-  ( ph  ->  ( K  e.  Grp  <->  M  e.  Grp ) )
94, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Grp  /\  K  e.  Grp )  <->  ( L  e. 
Grp  /\  M  e.  Grp ) ) )
101, 5, 2, 6, 3, 7mhmpropd 12933 . . . . 5  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
1110eleq2d 2259 . . . 4  |-  ( ph  ->  ( f  e.  ( J MndHom  K )  <->  f  e.  ( L MndHom  M ) ) )
129, 11anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) ) )
13 ghmgrp1 13201 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  J  e.  Grp )
14 ghmgrp2 13202 . . . . 5  |-  ( f  e.  ( J  GrpHom  K )  ->  K  e.  Grp )
1513, 14jca 306 . . . 4  |-  ( f  e.  ( J  GrpHom  K )  ->  ( J  e.  Grp  /\  K  e. 
Grp ) )
16 ghmmhmb 13210 . . . . 5  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( J  GrpHom  K )  =  ( J MndHom  K
) )
1716eleq2d 2259 . . . 4  |-  ( ( J  e.  Grp  /\  K  e.  Grp )  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( J MndHom  K ) ) )
1815, 17biadanii 613 . . 3  |-  ( f  e.  ( J  GrpHom  K )  <->  ( ( J  e.  Grp  /\  K  e.  Grp )  /\  f  e.  ( J MndHom  K ) ) )
19 ghmgrp1 13201 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  L  e.  Grp )
20 ghmgrp2 13202 . . . . 5  |-  ( f  e.  ( L  GrpHom  M )  ->  M  e.  Grp )
2119, 20jca 306 . . . 4  |-  ( f  e.  ( L  GrpHom  M )  ->  ( L  e.  Grp  /\  M  e. 
Grp ) )
22 ghmmhmb 13210 . . . . 5  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( L  GrpHom  M )  =  ( L MndHom  M
) )
2322eleq2d 2259 . . . 4  |-  ( ( L  e.  Grp  /\  M  e.  Grp )  ->  ( f  e.  ( L  GrpHom  M )  <->  f  e.  ( L MndHom  M ) ) )
2421, 23biadanii 613 . . 3  |-  ( f  e.  ( L  GrpHom  M )  <->  ( ( L  e.  Grp  /\  M  e.  Grp )  /\  f  e.  ( L MndHom  M ) ) )
2512, 18, 243bitr4g 223 . 2  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2625eqrdv 2187 1  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   MndHom cmhm 12924   Grpcgrp 12960    GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926  df-grp 12963  df-ghm 13197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator