ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp2 Unicode version

Theorem ghmgrp2 13657
Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp2  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )

Proof of Theorem ghmgrp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2206 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2206 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2206 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 13654 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. y  e.  ( Base `  S
) A. x  e.  ( Base `  S
) ( F `  ( y ( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T
) ( F `  x ) ) ) ) )
65simplbi 274 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
76simprd 114 1  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   -->wf 5276   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   Grpcgrp 13407    GrpHom cghm 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-ghm 13652
This theorem is referenced by:  ghmid  13660  ghminv  13661  ghmmhm  13664  ghmmulg  13667  ghmrn  13668  resghm  13671  ghmco  13675  ghmker  13681  ghmeqker  13682  ghmf1  13684  ghmf1o  13686  ghmpropd  13694
  Copyright terms: Public domain W3C validator