ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp2 Unicode version

Theorem ghmgrp2 13500
Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp2  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )

Proof of Theorem ghmgrp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2204 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2204 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2204 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 13497 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. y  e.  ( Base `  S
) A. x  e.  ( Base `  S
) ( F `  ( y ( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T
) ( F `  x ) ) ) ) )
65simplbi 274 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
76simprd 114 1  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   -->wf 5264   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   Grpcgrp 13250    GrpHom cghm 13494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-ghm 13495
This theorem is referenced by:  ghmid  13503  ghminv  13504  ghmmhm  13507  ghmmulg  13510  ghmrn  13511  resghm  13514  ghmco  13518  ghmker  13524  ghmeqker  13525  ghmf1  13527  ghmf1o  13529  ghmpropd  13537
  Copyright terms: Public domain W3C validator