ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp2 Unicode version

Theorem ghmgrp2 13202
Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp2  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )

Proof of Theorem ghmgrp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2189 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2189 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2189 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 13199 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. y  e.  ( Base `  S
) A. x  e.  ( Base `  S
) ( F `  ( y ( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T
) ( F `  x ) ) ) ) )
65simplbi 274 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
76simprd 114 1  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   -->wf 5231   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   Grpcgrp 12960    GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-ghm 13197
This theorem is referenced by:  ghmid  13205  ghminv  13206  ghmmhm  13209  ghmmulg  13212  ghmrn  13213  resghm  13216  ghmco  13220  ghmker  13226  ghmeqker  13227  ghmf1  13229  ghmf1o  13231  ghmpropd  13239
  Copyright terms: Public domain W3C validator