ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmmhmb Unicode version

Theorem ghmmhmb 13791
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus,  GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhmb  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T
) )

Proof of Theorem ghmmhmb
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 13790 . . 3  |-  ( f  e.  ( S  GrpHom  T )  ->  f  e.  ( S MndHom  T ) )
2 eqid 2229 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2229 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
4 eqid 2229 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
5 eqid 2229 . . . . 5  |-  ( +g  `  T )  =  ( +g  `  T )
6 simpll 527 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  ->  S  e.  Grp )
7 simplr 528 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  ->  T  e.  Grp )
82, 3mhmf 13498 . . . . . 6  |-  ( f  e.  ( S MndHom  T
)  ->  f :
( Base `  S ) --> ( Base `  T )
)
98adantl 277 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  -> 
f : ( Base `  S ) --> ( Base `  T ) )
102, 4, 5mhmlin 13500 . . . . . . 7  |-  ( ( f  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) ) )
11103expb 1228 . . . . . 6  |-  ( ( f  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( f `  (
x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) ) )
1211adantll 476 . . . . 5  |-  ( ( ( ( S  e. 
Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
f `  ( x
( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) )
132, 3, 4, 5, 6, 7, 9, 12isghmd 13789 . . . 4  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  -> 
f  e.  ( S 
GrpHom  T ) )
1413ex 115 . . 3  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( f  e.  ( S MndHom  T )  -> 
f  e.  ( S 
GrpHom  T ) ) )
151, 14impbid2 143 . 2  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( f  e.  ( S  GrpHom  T )  <->  f  e.  ( S MndHom  T ) ) )
1615eqrdv 2227 1  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   MndHom cmhm 13490   Grpcgrp 13533    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492  df-grp 13536  df-ghm 13778
This theorem is referenced by:  ghmex  13792  0ghm  13795  resghm2  13798  resghm2b  13799  ghmco  13801  ghmpropd  13820
  Copyright terms: Public domain W3C validator