ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmpropd Unicode version

Theorem rhmpropd 14183
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
rhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
rhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
rhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
rhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
rhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
rhmpropd.g  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
rhmpropd.h  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
Assertion
Ref Expression
rhmpropd  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem rhmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . . . 6  |-  (mulGrp `  J )  =  (mulGrp `  J )
2 eqid 2209 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
31, 2isrhm 14087 . . . . 5  |-  ( f  e.  ( J RingHom  K
)  <->  ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) ) )
43simplbi 274 . . . 4  |-  ( f  e.  ( J RingHom  K
)  ->  ( J  e.  Ring  /\  K  e.  Ring ) )
54a1i 9 . . 3  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  ->  ( J  e.  Ring  /\  K  e.  Ring ) ) )
6 eqid 2209 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
7 eqid 2209 . . . . . 6  |-  (mulGrp `  M )  =  (mulGrp `  M )
86, 7isrhm 14087 . . . . 5  |-  ( f  e.  ( L RingHom  M
)  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) )
98simplbi 274 . . . 4  |-  ( f  e.  ( L RingHom  M
)  ->  ( L  e.  Ring  /\  M  e.  Ring ) )
10 rhmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
11 rhmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
12 rhmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
13 rhmpropd.g . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
1410, 11, 12, 13ringpropd 13967 . . . . 5  |-  ( ph  ->  ( J  e.  Ring  <->  L  e.  Ring ) )
15 rhmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
16 rhmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
17 rhmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
18 rhmpropd.h . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
1915, 16, 17, 18ringpropd 13967 . . . . 5  |-  ( ph  ->  ( K  e.  Ring  <->  M  e.  Ring ) )
2014, 19anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring ) 
<->  ( L  e.  Ring  /\  M  e.  Ring )
) )
219, 20imbitrrid 156 . . 3  |-  ( ph  ->  ( f  e.  ( L RingHom  M )  ->  ( J  e.  Ring  /\  K  e.  Ring ) ) )
2220adantr 276 . . . . . 6  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( J  e.  Ring  /\  K  e.  Ring )  <->  ( L  e.  Ring  /\  M  e.  Ring ) ) )
2310, 15, 11, 16, 12, 17ghmpropd 13786 . . . . . . . . 9  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
2423eleq2d 2279 . . . . . . . 8  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2524adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( J 
GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2610adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  J
) )
27 simprl 529 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  J  e.  Ring )
28 eqid 2209 . . . . . . . . . . . 12  |-  ( Base `  J )  =  (
Base `  J )
291, 28mgpbasg 13855 . . . . . . . . . . 11  |-  ( J  e.  Ring  ->  ( Base `  J )  =  (
Base `  (mulGrp `  J
) ) )
3027, 29syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  J )  =  ( Base `  (mulGrp `  J ) ) )
3126, 30eqtrd 2242 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  (mulGrp `  J ) ) )
3215adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  K
) )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  K  e.  Ring )
34 eqid 2209 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
352, 34mgpbasg 13855 . . . . . . . . . . 11  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
3633, 35syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3732, 36eqtrd 2242 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  (mulGrp `  K ) ) )
3811adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  L
) )
3920simprbda 383 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  L  e.  Ring )
40 eqid 2209 . . . . . . . . . . . 12  |-  ( Base `  L )  =  (
Base `  L )
416, 40mgpbasg 13855 . . . . . . . . . . 11  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
4239, 41syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  L )  =  ( Base `  (mulGrp `  L ) ) )
4338, 42eqtrd 2242 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  (mulGrp `  L ) ) )
4416adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  M
) )
4520simplbda 384 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  M  e.  Ring )
46 eqid 2209 . . . . . . . . . . . 12  |-  ( Base `  M )  =  (
Base `  M )
477, 46mgpbasg 13855 . . . . . . . . . . 11  |-  ( M  e.  Ring  ->  ( Base `  M )  =  (
Base `  (mulGrp `  M
) ) )
4845, 47syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  M )  =  ( Base `  (mulGrp `  M ) ) )
4944, 48eqtrd 2242 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  (mulGrp `  M ) ) )
5013adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  J ) y )  =  ( x ( .r `  L ) y ) )
5127adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  J  e.  Ring )
52 eqid 2209 . . . . . . . . . . . . 13  |-  ( .r
`  J )  =  ( .r `  J
)
531, 52mgpplusgg 13853 . . . . . . . . . . . 12  |-  ( J  e.  Ring  ->  ( .r
`  J )  =  ( +g  `  (mulGrp `  J ) ) )
5453oveqd 5991 . . . . . . . . . . 11  |-  ( J  e.  Ring  ->  ( x ( .r `  J
) y )  =  ( x ( +g  `  (mulGrp `  J )
) y ) )
5551, 54syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  J ) y )  =  ( x ( +g  `  (mulGrp `  J ) ) y ) )
5639adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  L  e.  Ring )
57 eqid 2209 . . . . . . . . . . . . 13  |-  ( .r
`  L )  =  ( .r `  L
)
586, 57mgpplusgg 13853 . . . . . . . . . . . 12  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
5958oveqd 5991 . . . . . . . . . . 11  |-  ( L  e.  Ring  ->  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
6056, 59syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  L ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
6150, 55, 603eqtr3d 2250 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  (mulGrp `  J ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
6218adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  M ) y ) )
6333adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  K  e.  Ring )
64 eqid 2209 . . . . . . . . . . . . 13  |-  ( .r
`  K )  =  ( .r `  K
)
652, 64mgpplusgg 13853 . . . . . . . . . . . 12  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
6665oveqd 5991 . . . . . . . . . . 11  |-  ( K  e.  Ring  ->  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y ) )
6763, 66syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  K ) y )  =  ( x ( +g  `  (mulGrp `  K ) ) y ) )
6845adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  M  e.  Ring )
69 eqid 2209 . . . . . . . . . . . . 13  |-  ( .r
`  M )  =  ( .r `  M
)
707, 69mgpplusgg 13853 . . . . . . . . . . . 12  |-  ( M  e.  Ring  ->  ( .r
`  M )  =  ( +g  `  (mulGrp `  M ) ) )
7170oveqd 5991 . . . . . . . . . . 11  |-  ( M  e.  Ring  ->  ( x ( .r `  M
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y ) )
7268, 71syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  M ) y )  =  ( x ( +g  `  (mulGrp `  M ) ) y ) )
7362, 67, 723eqtr3d 2250 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  M ) ) y ) )
7431, 37, 43, 49, 61, 73mhmpropd 13465 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
(mulGrp `  J ) MndHom  (mulGrp `  K ) )  =  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) )
7574eleq2d 2279 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) )  <->  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) )
7625, 75anbi12d 473 . . . . . 6  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) )  <-> 
( f  e.  ( L  GrpHom  M )  /\  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) ) )
7722, 76anbi12d 473 . . . . 5  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( ( J  e. 
Ring  /\  K  e.  Ring )  /\  ( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) ) )  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) ) )
7877, 3, 83bitr4g 223 . . . 4  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
7978ex 115 . . 3  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring )  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M
) ) ) )
805, 21, 79pm5.21ndd 709 . 2  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
8180eqrdv 2207 1  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   ` cfv 5294  (class class class)co 5974   Basecbs 12998   +g cplusg 13076   .rcmulr 13077   MndHom cmhm 13456    GrpHom cghm 13743  mulGrpcmgp 13849   Ringcrg 13925   RingHom crh 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-ghm 13744  df-mgp 13850  df-ur 13889  df-ring 13927  df-rhm 14081
This theorem is referenced by:  zrhpropd  14555
  Copyright terms: Public domain W3C validator