ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmpropd Unicode version

Theorem rhmpropd 14226
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
rhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
rhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
rhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
rhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
rhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
rhmpropd.g  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
rhmpropd.h  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
Assertion
Ref Expression
rhmpropd  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Distinct variable groups:    x, y, J   
x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem rhmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . . 6  |-  (mulGrp `  J )  =  (mulGrp `  J )
2 eqid 2229 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
31, 2isrhm 14130 . . . . 5  |-  ( f  e.  ( J RingHom  K
)  <->  ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) ) )
43simplbi 274 . . . 4  |-  ( f  e.  ( J RingHom  K
)  ->  ( J  e.  Ring  /\  K  e.  Ring ) )
54a1i 9 . . 3  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  ->  ( J  e.  Ring  /\  K  e.  Ring ) ) )
6 eqid 2229 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
7 eqid 2229 . . . . . 6  |-  (mulGrp `  M )  =  (mulGrp `  M )
86, 7isrhm 14130 . . . . 5  |-  ( f  e.  ( L RingHom  M
)  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) )
98simplbi 274 . . . 4  |-  ( f  e.  ( L RingHom  M
)  ->  ( L  e.  Ring  /\  M  e.  Ring ) )
10 rhmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
11 rhmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
12 rhmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
13 rhmpropd.g . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
1410, 11, 12, 13ringpropd 14009 . . . . 5  |-  ( ph  ->  ( J  e.  Ring  <->  L  e.  Ring ) )
15 rhmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
16 rhmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
17 rhmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
18 rhmpropd.h . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
1915, 16, 17, 18ringpropd 14009 . . . . 5  |-  ( ph  ->  ( K  e.  Ring  <->  M  e.  Ring ) )
2014, 19anbi12d 473 . . . 4  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring ) 
<->  ( L  e.  Ring  /\  M  e.  Ring )
) )
219, 20imbitrrid 156 . . 3  |-  ( ph  ->  ( f  e.  ( L RingHom  M )  ->  ( J  e.  Ring  /\  K  e.  Ring ) ) )
2220adantr 276 . . . . . 6  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( J  e.  Ring  /\  K  e.  Ring )  <->  ( L  e.  Ring  /\  M  e.  Ring ) ) )
2310, 15, 11, 16, 12, 17ghmpropd 13828 . . . . . . . . 9  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
2423eleq2d 2299 . . . . . . . 8  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2524adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( J 
GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
2610adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  J
) )
27 simprl 529 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  J  e.  Ring )
28 eqid 2229 . . . . . . . . . . . 12  |-  ( Base `  J )  =  (
Base `  J )
291, 28mgpbasg 13897 . . . . . . . . . . 11  |-  ( J  e.  Ring  ->  ( Base `  J )  =  (
Base `  (mulGrp `  J
) ) )
3027, 29syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  J )  =  ( Base `  (mulGrp `  J ) ) )
3126, 30eqtrd 2262 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  (mulGrp `  J ) ) )
3215adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  K
) )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  K  e.  Ring )
34 eqid 2229 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
352, 34mgpbasg 13897 . . . . . . . . . . 11  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
3633, 35syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3732, 36eqtrd 2262 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  (mulGrp `  K ) ) )
3811adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  L
) )
3920simprbda 383 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  L  e.  Ring )
40 eqid 2229 . . . . . . . . . . . 12  |-  ( Base `  L )  =  (
Base `  L )
416, 40mgpbasg 13897 . . . . . . . . . . 11  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
4239, 41syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  L )  =  ( Base `  (mulGrp `  L ) ) )
4338, 42eqtrd 2262 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  B  =  ( Base `  (mulGrp `  L ) ) )
4416adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  M
) )
4520simplbda 384 . . . . . . . . . . 11  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  M  e.  Ring )
46 eqid 2229 . . . . . . . . . . . 12  |-  ( Base `  M )  =  (
Base `  M )
477, 46mgpbasg 13897 . . . . . . . . . . 11  |-  ( M  e.  Ring  ->  ( Base `  M )  =  (
Base `  (mulGrp `  M
) ) )
4845, 47syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  ( Base `  M )  =  ( Base `  (mulGrp `  M ) ) )
4944, 48eqtrd 2262 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  C  =  ( Base `  (mulGrp `  M ) ) )
5013adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  J ) y )  =  ( x ( .r `  L ) y ) )
5127adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  J  e.  Ring )
52 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  J )  =  ( .r `  J
)
531, 52mgpplusgg 13895 . . . . . . . . . . . 12  |-  ( J  e.  Ring  ->  ( .r
`  J )  =  ( +g  `  (mulGrp `  J ) ) )
5453oveqd 6024 . . . . . . . . . . 11  |-  ( J  e.  Ring  ->  ( x ( .r `  J
) y )  =  ( x ( +g  `  (mulGrp `  J )
) y ) )
5551, 54syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  J ) y )  =  ( x ( +g  `  (mulGrp `  J ) ) y ) )
5639adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  L  e.  Ring )
57 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  L )  =  ( .r `  L
)
586, 57mgpplusgg 13895 . . . . . . . . . . . 12  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
5958oveqd 6024 . . . . . . . . . . 11  |-  ( L  e.  Ring  ->  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
6056, 59syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  L ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
6150, 55, 603eqtr3d 2270 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  (mulGrp `  J ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
6218adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  M ) y ) )
6333adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  K  e.  Ring )
64 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  K )  =  ( .r `  K
)
652, 64mgpplusgg 13895 . . . . . . . . . . . 12  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
6665oveqd 6024 . . . . . . . . . . 11  |-  ( K  e.  Ring  ->  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y ) )
6763, 66syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  K ) y )  =  ( x ( +g  `  (mulGrp `  K ) ) y ) )
6845adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  M  e.  Ring )
69 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  M )  =  ( .r `  M
)
707, 69mgpplusgg 13895 . . . . . . . . . . . 12  |-  ( M  e.  Ring  ->  ( .r
`  M )  =  ( +g  `  (mulGrp `  M ) ) )
7170oveqd 6024 . . . . . . . . . . 11  |-  ( M  e.  Ring  ->  ( x ( .r `  M
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y ) )
7268, 71syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( .r `  M ) y )  =  ( x ( +g  `  (mulGrp `  M ) ) y ) )
7362, 67, 723eqtr3d 2270 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  M ) ) y ) )
7431, 37, 43, 49, 61, 73mhmpropd 13507 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
(mulGrp `  J ) MndHom  (mulGrp `  K ) )  =  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) )
7574eleq2d 2299 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) )  <->  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) )
7625, 75anbi12d 473 . . . . . 6  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) )  <-> 
( f  e.  ( L  GrpHom  M )  /\  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) ) )
7722, 76anbi12d 473 . . . . 5  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
( ( J  e. 
Ring  /\  K  e.  Ring )  /\  ( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) ) )  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) ) )
7877, 3, 83bitr4g 223 . . . 4  |-  ( (
ph  /\  ( J  e.  Ring  /\  K  e.  Ring ) )  ->  (
f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
7978ex 115 . . 3  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring )  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M
) ) ) )
805, 21, 79pm5.21ndd 710 . 2  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
8180eqrdv 2227 1  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6007   Basecbs 13040   +g cplusg 13118   .rcmulr 13119   MndHom cmhm 13498    GrpHom cghm 13785  mulGrpcmgp 13891   Ringcrg 13967   RingHom crh 14122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-grp 13544  df-ghm 13786  df-mgp 13892  df-ur 13931  df-ring 13969  df-rhm 14124
This theorem is referenced by:  zrhpropd  14598
  Copyright terms: Public domain W3C validator