ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusghm Unicode version

Theorem qusghm 13651
Description: If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x  |-  X  =  ( Base `  G
)
qusghm.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
qusghm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
qusghm  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, G    x, H    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem qusghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2205 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2205 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2205 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 nsgsubg 13574 . . 3  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
6 subgrcl 13548 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
75, 6syl 14 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
8 qusghm.h . . 3  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
98qusgrp 13601 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
108, 1, 2quseccl 13602 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  x  e.  X )  ->  [ x ] ( G ~QG  Y )  e.  ( Base `  H
) )
11 qusghm.f . . 3  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
1210, 11fmptd 5736 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F : X
--> ( Base `  H
) )
138, 1, 3, 4qusadd 13603 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y ) )
14133expb 1207 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( G ~QG  Y ) ( +g  `  H ) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
15 eceq1 6657 . . . . 5  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
16 simprl 529 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
17 eqgex 13590 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  (NrmSGrp `  G
) )  ->  ( G ~QG  Y )  e.  _V )
187, 17mpancom 422 . . . . . . 7  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( G ~QG  Y
)  e.  _V )
1918adantr 276 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( G ~QG  Y )  e.  _V )
20 ecexg 6626 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ y ] ( G ~QG  Y )  e.  _V )
2119, 20syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ y ] ( G ~QG  Y )  e.  _V )
2211, 15, 16, 21fvmptd3 5675 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( G ~QG  Y ) )
23 eceq1 6657 . . . . 5  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
24 simprr 531 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
25 ecexg 6626 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
2619, 25syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ z ] ( G ~QG  Y )  e.  _V )
2711, 23, 24, 26fvmptd3 5675 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( G ~QG  Y ) )
2822, 27oveq12d 5964 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( +g  `  H ) ( F `
 z ) )  =  ( [ y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) ) )
29 eceq1 6657 . . . 4  |-  ( x  =  ( y ( +g  `  G ) z )  ->  [ x ] ( G ~QG  Y )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
301, 3grpcl 13373 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
31303expb 1207 . . . . 5  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
327, 31sylan 283 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( +g  `  G ) z )  e.  X )
33 ecexg 6626 . . . . 5  |-  ( ( G ~QG  Y )  e.  _V  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3419, 33syl 14 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3511, 29, 32, 34fvmptd3 5675 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3614, 28, 353eqtr4rd 2249 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  ( ( F `
 y ) ( +g  `  H ) ( F `  z
) ) )
371, 2, 3, 4, 7, 9, 12, 36isghmd 13621 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    |-> cmpt 4106   ` cfv 5272  (class class class)co 5946   [cec 6620   Basecbs 12865   +g cplusg 12942    /.s cqus 13165   Grpcgrp 13365  SubGrpcsubg 13536  NrmSGrpcnsg 13537   ~QG cqg 13538    GrpHom cghm 13609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-er 6622  df-ec 6624  df-qs 6628  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-0g 13123  df-iimas 13167  df-qus 13168  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-subg 13539  df-nsg 13540  df-eqg 13541  df-ghm 13610
This theorem is referenced by:  qusrhm  14323
  Copyright terms: Public domain W3C validator