ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusghm Unicode version

Theorem qusghm 13733
Description: If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x  |-  X  =  ( Base `  G
)
qusghm.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
qusghm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
qusghm  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, G    x, H    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem qusghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2207 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2207 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2207 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 nsgsubg 13656 . . 3  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
6 subgrcl 13630 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
75, 6syl 14 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
8 qusghm.h . . 3  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
98qusgrp 13683 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
108, 1, 2quseccl 13684 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  x  e.  X )  ->  [ x ] ( G ~QG  Y )  e.  ( Base `  H
) )
11 qusghm.f . . 3  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
1210, 11fmptd 5757 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F : X
--> ( Base `  H
) )
138, 1, 3, 4qusadd 13685 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y ) )
14133expb 1207 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( G ~QG  Y ) ( +g  `  H ) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
15 eceq1 6678 . . . . 5  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
16 simprl 529 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
17 eqgex 13672 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  (NrmSGrp `  G
) )  ->  ( G ~QG  Y )  e.  _V )
187, 17mpancom 422 . . . . . . 7  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( G ~QG  Y
)  e.  _V )
1918adantr 276 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( G ~QG  Y )  e.  _V )
20 ecexg 6647 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ y ] ( G ~QG  Y )  e.  _V )
2119, 20syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ y ] ( G ~QG  Y )  e.  _V )
2211, 15, 16, 21fvmptd3 5696 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( G ~QG  Y ) )
23 eceq1 6678 . . . . 5  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
24 simprr 531 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
25 ecexg 6647 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
2619, 25syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ z ] ( G ~QG  Y )  e.  _V )
2711, 23, 24, 26fvmptd3 5696 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( G ~QG  Y ) )
2822, 27oveq12d 5985 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( +g  `  H ) ( F `
 z ) )  =  ( [ y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) ) )
29 eceq1 6678 . . . 4  |-  ( x  =  ( y ( +g  `  G ) z )  ->  [ x ] ( G ~QG  Y )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
301, 3grpcl 13455 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
31303expb 1207 . . . . 5  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
327, 31sylan 283 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( +g  `  G ) z )  e.  X )
33 ecexg 6647 . . . . 5  |-  ( ( G ~QG  Y )  e.  _V  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3419, 33syl 14 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3511, 29, 32, 34fvmptd3 5696 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3614, 28, 353eqtr4rd 2251 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  ( ( F `
 y ) ( +g  `  H ) ( F `  z
) ) )
371, 2, 3, 4, 7, 9, 12, 36isghmd 13703 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    |-> cmpt 4121   ` cfv 5290  (class class class)co 5967   [cec 6641   Basecbs 12947   +g cplusg 13024    /.s cqus 13247   Grpcgrp 13447  SubGrpcsubg 13618  NrmSGrpcnsg 13619   ~QG cqg 13620    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-ec 6645  df-qs 6649  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-nsg 13622  df-eqg 13623  df-ghm 13692
This theorem is referenced by:  qusrhm  14405
  Copyright terms: Public domain W3C validator