ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusghm Unicode version

Theorem qusghm 13352
Description: If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x  |-  X  =  ( Base `  G
)
qusghm.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
qusghm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
qusghm  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, G    x, H    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem qusghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2193 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2193 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2193 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 nsgsubg 13275 . . 3  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
6 subgrcl 13249 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
75, 6syl 14 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
8 qusghm.h . . 3  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
98qusgrp 13302 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
108, 1, 2quseccl 13303 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  x  e.  X )  ->  [ x ] ( G ~QG  Y )  e.  ( Base `  H
) )
11 qusghm.f . . 3  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
1210, 11fmptd 5712 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F : X
--> ( Base `  H
) )
138, 1, 3, 4qusadd 13304 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y ) )
14133expb 1206 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( G ~QG  Y ) ( +g  `  H ) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
15 eceq1 6622 . . . . 5  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
16 simprl 529 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
17 eqgex 13291 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  (NrmSGrp `  G
) )  ->  ( G ~QG  Y )  e.  _V )
187, 17mpancom 422 . . . . . . 7  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( G ~QG  Y
)  e.  _V )
1918adantr 276 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( G ~QG  Y )  e.  _V )
20 ecexg 6591 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ y ] ( G ~QG  Y )  e.  _V )
2119, 20syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ y ] ( G ~QG  Y )  e.  _V )
2211, 15, 16, 21fvmptd3 5651 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( G ~QG  Y ) )
23 eceq1 6622 . . . . 5  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
24 simprr 531 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
25 ecexg 6591 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
2619, 25syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ z ] ( G ~QG  Y )  e.  _V )
2711, 23, 24, 26fvmptd3 5651 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( G ~QG  Y ) )
2822, 27oveq12d 5936 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( +g  `  H ) ( F `
 z ) )  =  ( [ y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) ) )
29 eceq1 6622 . . . 4  |-  ( x  =  ( y ( +g  `  G ) z )  ->  [ x ] ( G ~QG  Y )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
301, 3grpcl 13080 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
31303expb 1206 . . . . 5  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
327, 31sylan 283 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( +g  `  G ) z )  e.  X )
33 ecexg 6591 . . . . 5  |-  ( ( G ~QG  Y )  e.  _V  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3419, 33syl 14 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3511, 29, 32, 34fvmptd3 5651 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3614, 28, 353eqtr4rd 2237 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  ( ( F `
 y ) ( +g  `  H ) ( F `  z
) ) )
371, 2, 3, 4, 7, 9, 12, 36isghmd 13322 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   [cec 6585   Basecbs 12618   +g cplusg 12695    /.s cqus 12883   Grpcgrp 13072  SubGrpcsubg 13237  NrmSGrpcnsg 13238   ~QG cqg 13239    GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-er 6587  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311
This theorem is referenced by:  qusrhm  14024
  Copyright terms: Public domain W3C validator