ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusghm Unicode version

Theorem qusghm 13488
Description: If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x  |-  X  =  ( Base `  G
)
qusghm.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
qusghm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
qusghm  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, G    x, H    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem qusghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2196 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2196 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2196 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 nsgsubg 13411 . . 3  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
6 subgrcl 13385 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
75, 6syl 14 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
8 qusghm.h . . 3  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
98qusgrp 13438 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
108, 1, 2quseccl 13439 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  x  e.  X )  ->  [ x ] ( G ~QG  Y )  e.  ( Base `  H
) )
11 qusghm.f . . 3  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
1210, 11fmptd 5719 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F : X
--> ( Base `  H
) )
138, 1, 3, 4qusadd 13440 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y ) )
14133expb 1206 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( G ~QG  Y ) ( +g  `  H ) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
15 eceq1 6636 . . . . 5  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
16 simprl 529 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
17 eqgex 13427 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  (NrmSGrp `  G
) )  ->  ( G ~QG  Y )  e.  _V )
187, 17mpancom 422 . . . . . . 7  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( G ~QG  Y
)  e.  _V )
1918adantr 276 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( G ~QG  Y )  e.  _V )
20 ecexg 6605 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ y ] ( G ~QG  Y )  e.  _V )
2119, 20syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ y ] ( G ~QG  Y )  e.  _V )
2211, 15, 16, 21fvmptd3 5658 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( G ~QG  Y ) )
23 eceq1 6636 . . . . 5  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
24 simprr 531 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
25 ecexg 6605 . . . . . 6  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
2619, 25syl 14 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ z ] ( G ~QG  Y )  e.  _V )
2711, 23, 24, 26fvmptd3 5658 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( G ~QG  Y ) )
2822, 27oveq12d 5943 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( +g  `  H ) ( F `
 z ) )  =  ( [ y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) ) )
29 eceq1 6636 . . . 4  |-  ( x  =  ( y ( +g  `  G ) z )  ->  [ x ] ( G ~QG  Y )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
301, 3grpcl 13210 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
31303expb 1206 . . . . 5  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
327, 31sylan 283 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( +g  `  G ) z )  e.  X )
33 ecexg 6605 . . . . 5  |-  ( ( G ~QG  Y )  e.  _V  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3419, 33syl 14 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y )  e.  _V )
3511, 29, 32, 34fvmptd3 5658 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3614, 28, 353eqtr4rd 2240 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  ( ( F `
 y ) ( +g  `  H ) ( F `  z
) ) )
371, 2, 3, 4, 7, 9, 12, 36isghmd 13458 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   [cec 6599   Basecbs 12703   +g cplusg 12780    /.s cqus 13002   Grpcgrp 13202  SubGrpcsubg 13373  NrmSGrpcnsg 13374   ~QG cqg 13375    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447
This theorem is referenced by:  qusrhm  14160
  Copyright terms: Public domain W3C validator