ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpropd GIF version

Theorem ghmpropd 13669
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a (𝜑𝐵 = (Base‘𝐽))
ghmpropd.b (𝜑𝐶 = (Base‘𝐾))
ghmpropd.c (𝜑𝐵 = (Base‘𝐿))
ghmpropd.d (𝜑𝐶 = (Base‘𝑀))
ghmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
ghmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
ghmpropd (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ghmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 ghmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 ghmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 13399 . . . . 5 (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp))
5 ghmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
6 ghmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
7 ghmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
85, 6, 7grppropd 13399 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp))
94, 8anbi12d 473 . . . 4 (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)))
101, 5, 2, 6, 3, 7mhmpropd 13348 . . . . 5 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
1110eleq2d 2276 . . . 4 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
129, 11anbi12d 473 . . 3 (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))))
13 ghmgrp1 13631 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp)
14 ghmgrp2 13632 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp)
1513, 14jca 306 . . . 4 (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp))
16 ghmmhmb 13640 . . . . 5 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾))
1716eleq2d 2276 . . . 4 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾)))
1815, 17biadanii 613 . . 3 (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)))
19 ghmgrp1 13631 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp)
20 ghmgrp2 13632 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp)
2119, 20jca 306 . . . 4 (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))
22 ghmmhmb 13640 . . . . 5 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀))
2322eleq2d 2276 . . . 4 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2421, 23biadanii 613 . . 3 (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2512, 18, 243bitr4g 223 . 2 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2625eqrdv 2204 1 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959   MndHom cmhm 13339  Grpcgrp 13382   GrpHom cghm 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-map 6747  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mhm 13341  df-grp 13385  df-ghm 13627
This theorem is referenced by:  rhmpropd  14066
  Copyright terms: Public domain W3C validator