Proof of Theorem grpinvid2
Step | Hyp | Ref
| Expression |
1 | | oveq1 5860 |
. . . 4
⊢ ((𝑁‘𝑋) = 𝑌 → ((𝑁‘𝑋) + 𝑋) = (𝑌 + 𝑋)) |
2 | 1 | adantl 275 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → ((𝑁‘𝑋) + 𝑋) = (𝑌 + 𝑋)) |
3 | | grpinv.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
4 | | grpinv.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
5 | | grpinv.u |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
6 | | grpinv.n |
. . . . . 6
⊢ 𝑁 = (invg‘𝐺) |
7 | 3, 4, 5, 6 | grplinv 12752 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
8 | 7 | 3adant3 1012 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
9 | 8 | adantr 274 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
10 | 2, 9 | eqtr3d 2205 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → (𝑌 + 𝑋) = 0 ) |
11 | 3, 6 | grpinvcl 12751 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | 3, 4, 5 | grplid 12736 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ( 0 + (𝑁‘𝑋)) = (𝑁‘𝑋)) |
13 | 11, 12 | syldan 280 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + (𝑁‘𝑋)) = (𝑁‘𝑋)) |
14 | 13 | 3adant3 1012 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 + (𝑁‘𝑋)) = (𝑁‘𝑋)) |
15 | 14 | eqcomd 2176 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 + (𝑁‘𝑋))) |
16 | 15 | adantr 274 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁‘𝑋) = ( 0 + (𝑁‘𝑋))) |
17 | | oveq1 5860 |
. . . 4
⊢ ((𝑌 + 𝑋) = 0 → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = ( 0 + (𝑁‘𝑋))) |
18 | 17 | adantl 275 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = ( 0 + (𝑁‘𝑋))) |
19 | | simprr 527 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
20 | | simprl 526 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
21 | 11 | adantrr 476 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁‘𝑋) ∈ 𝐵) |
22 | 19, 20, 21 | 3jca 1172 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) |
23 | 3, 4 | grpass 12717 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = (𝑌 + (𝑋 + (𝑁‘𝑋)))) |
24 | 22, 23 | syldan 280 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = (𝑌 + (𝑋 + (𝑁‘𝑋)))) |
25 | 24 | 3impb 1194 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = (𝑌 + (𝑋 + (𝑁‘𝑋)))) |
26 | 3, 4, 5, 6 | grprinv 12753 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
27 | 26 | oveq2d 5869 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑌 + (𝑋 + (𝑁‘𝑋))) = (𝑌 + 0 )) |
28 | 27 | 3adant3 1012 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + (𝑋 + (𝑁‘𝑋))) = (𝑌 + 0 )) |
29 | 3, 4, 5 | grprid 12737 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 + 0 ) = 𝑌) |
30 | 29 | 3adant2 1011 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + 0 ) = 𝑌) |
31 | 25, 28, 30 | 3eqtrd 2207 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = 𝑌) |
32 | 31 | adantr 274 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁‘𝑋)) = 𝑌) |
33 | 16, 18, 32 | 3eqtr2d 2209 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁‘𝑋) = 𝑌) |
34 | 10, 33 | impbida 591 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 )) |