![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpsubid | GIF version |
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2177 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2177 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 12873 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
6 | 5 | anidms 397 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
7 | 6 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
8 | grpsubid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
9 | 1, 2, 8, 3 | grprinv 12877 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋)) = 0 ) |
10 | 7, 9 | eqtrd 2210 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5216 (class class class)co 5874 Basecbs 12456 +gcplusg 12530 0gc0g 12695 Grpcgrp 12831 invgcminusg 12832 -gcsg 12833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-inn 8918 df-2 8976 df-ndx 12459 df-slot 12460 df-base 12462 df-plusg 12543 df-0g 12697 df-mgm 12729 df-sgrp 12762 df-mnd 12772 df-grp 12834 df-minusg 12835 df-sbg 12836 |
This theorem is referenced by: grppncan 12915 grpnpncan0 12920 issubg4m 13006 0nsg 13027 abladdsub4 13070 ablpncan2 13072 ablpnpcan 13076 ablnncan 13077 aprirr 13294 |
Copyright terms: Public domain | W3C validator |