ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsubdir Unicode version

Theorem modqsubdir 10349
Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqsubdir  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )

Proof of Theorem modqsubdir
StepHypRef Expression
1 simpll 524 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  QQ )
2 simprl 526 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  QQ )
3 simprr 527 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <  C )
41, 2, 3modqcld 10284 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  QQ )
5 qre 9584 . . . 4  |-  ( ( A  mod  C )  e.  QQ  ->  ( A  mod  C )  e.  RR )
64, 5syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  RR )
7 simplr 525 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  QQ )
87, 2, 3modqcld 10284 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  QQ )
9 qre 9584 . . . 4  |-  ( ( B  mod  C )  e.  QQ  ->  ( B  mod  C )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  RR )
116, 10subge0d 8454 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( B  mod  C
)  <_  ( A  mod  C ) ) )
12 qsubcl 9597 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
1312adantr 274 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  -  B
)  e.  QQ )
143gt0ne0d 8431 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  =/=  0 )
15 qdivcl 9602 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( A  /  C )  e.  QQ )
161, 2, 14, 15syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  /  C
)  e.  QQ )
1716flqcld 10233 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  ZZ )
18 qdivcl 9602 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( B  /  C )  e.  QQ )
197, 2, 14, 18syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  /  C
)  e.  QQ )
2019flqcld 10233 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  ZZ )
2117, 20zsubcld 9339 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )
22 modqcyc2 10316 . . . . . . 7  |-  ( ( ( ( A  -  B )  e.  QQ  /\  ( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( (
( A  -  B
)  -  ( C  x.  ( ( |_
`  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( A  -  B
)  mod  C )
)
2313, 21, 2, 3, 22syl22anc 1234 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( A  -  B )  mod 
C ) )
24 qcn 9593 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
251, 24syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  CC )
26 qcn 9593 . . . . . . . . . 10  |-  ( B  e.  QQ  ->  B  e.  CC )
277, 26syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  CC )
28 zq 9585 . . . . . . . . . . . 12  |-  ( ( |_ `  ( A  /  C ) )  e.  ZZ  ->  ( |_ `  ( A  /  C ) )  e.  QQ )
2917, 28syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  QQ )
30 qmulcl 9596 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( A  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
312, 29, 30syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
32 qcn 9593 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( A  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( A  /  C
) ) )  e.  CC )
3331, 32syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  CC )
34 zq 9585 . . . . . . . . . . . 12  |-  ( ( |_ `  ( B  /  C ) )  e.  ZZ  ->  ( |_ `  ( B  /  C ) )  e.  QQ )
3520, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  QQ )
36 qmulcl 9596 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( B  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
372, 35, 36syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
38 qcn 9593 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( B  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
3937, 38syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
4025, 27, 33, 39sub4d 8279 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
41 qcn 9593 . . . . . . . . . . 11  |-  ( C  e.  QQ  ->  C  e.  CC )
422, 41syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  CC )
4317zcnd 9335 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  CC )
4420zcnd 9335 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  CC )
4542, 43, 44subdid 8333 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) )  =  ( ( C  x.  ( |_ `  ( A  /  C
) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
4645oveq2d 5869 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
47 modqval 10280 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C
) ) ) ) )
481, 2, 3, 47syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) ) )
49 modqval 10280 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
507, 2, 3, 49syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
5148, 50oveq12d 5871 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
5240, 46, 513eqtr4d 2213 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
5352oveq1d 5868 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
5423, 53eqtr3d 2205 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( ( A  mod  C
)  -  ( B  mod  C ) )  mod  C ) )
5554adantr 274 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
56 qsubcl 9597 . . . . . . 7  |-  ( ( ( A  mod  C
)  e.  QQ  /\  ( B  mod  C )  e.  QQ )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
574, 8, 56syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
5857adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  e.  QQ )
592adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  C  e.  QQ )
60 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
616, 10resubcld 8300 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  RR )
62 qre 9584 . . . . . . . 8  |-  ( C  e.  QQ  ->  C  e.  RR )
632, 62syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  RR )
64 modqge0 10288 . . . . . . . . 9  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( B  mod  C
) )
657, 2, 3, 64syl3anc 1233 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( B  mod  C ) )
666, 10subge02d 8456 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  ( B  mod  C )  <->  ( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) ) )
6765, 66mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) )
68 modqlt 10289 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  < 
C )
691, 2, 3, 68syl3anc 1233 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  <  C )
7061, 6, 63, 67, 69lelttrd 8044 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <  C )
7170adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <  C )
72 modqid 10305 . . . . 5  |-  ( ( ( ( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ  /\  C  e.  QQ )  /\  ( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  /\  ( ( A  mod  C )  -  ( B  mod  C ) )  <  C ) )  ->  ( (
( A  mod  C
)  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7358, 59, 60, 71, 72syl22anc 1234 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( ( A  mod  C )  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7455, 73eqtrd 2203 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
75 modqge0 10288 . . . . . 6  |-  ( ( ( A  -  B
)  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( ( A  -  B )  mod  C
) )
7613, 2, 3, 75syl3anc 1233 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
7776adantr 274 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
78 simpr 109 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7977, 78breqtrd 4015 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
8074, 79impbida 591 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
8111, 80bitr3d 189 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   ZZcz 9212   QQcq 9578   |_cfl 10224    mod cmo 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279
This theorem is referenced by:  modqeqmodmin  10350
  Copyright terms: Public domain W3C validator