ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsubdir Unicode version

Theorem modqsubdir 10536
Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqsubdir  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )

Proof of Theorem modqsubdir
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  QQ )
2 simprl 529 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  QQ )
3 simprr 531 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <  C )
41, 2, 3modqcld 10471 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  QQ )
5 qre 9745 . . . 4  |-  ( ( A  mod  C )  e.  QQ  ->  ( A  mod  C )  e.  RR )
64, 5syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  RR )
7 simplr 528 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  QQ )
87, 2, 3modqcld 10471 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  QQ )
9 qre 9745 . . . 4  |-  ( ( B  mod  C )  e.  QQ  ->  ( B  mod  C )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  RR )
116, 10subge0d 8607 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( B  mod  C
)  <_  ( A  mod  C ) ) )
12 qsubcl 9758 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
1312adantr 276 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  -  B
)  e.  QQ )
143gt0ne0d 8584 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  =/=  0 )
15 qdivcl 9763 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( A  /  C )  e.  QQ )
161, 2, 14, 15syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  /  C
)  e.  QQ )
1716flqcld 10418 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  ZZ )
18 qdivcl 9763 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( B  /  C )  e.  QQ )
197, 2, 14, 18syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  /  C
)  e.  QQ )
2019flqcld 10418 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  ZZ )
2117, 20zsubcld 9499 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )
22 modqcyc2 10503 . . . . . . 7  |-  ( ( ( ( A  -  B )  e.  QQ  /\  ( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( (
( A  -  B
)  -  ( C  x.  ( ( |_
`  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( A  -  B
)  mod  C )
)
2313, 21, 2, 3, 22syl22anc 1250 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( A  -  B )  mod 
C ) )
24 qcn 9754 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
251, 24syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  CC )
26 qcn 9754 . . . . . . . . . 10  |-  ( B  e.  QQ  ->  B  e.  CC )
277, 26syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  CC )
28 zq 9746 . . . . . . . . . . . 12  |-  ( ( |_ `  ( A  /  C ) )  e.  ZZ  ->  ( |_ `  ( A  /  C ) )  e.  QQ )
2917, 28syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  QQ )
30 qmulcl 9757 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( A  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
312, 29, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
32 qcn 9754 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( A  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( A  /  C
) ) )  e.  CC )
3331, 32syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  CC )
34 zq 9746 . . . . . . . . . . . 12  |-  ( ( |_ `  ( B  /  C ) )  e.  ZZ  ->  ( |_ `  ( B  /  C ) )  e.  QQ )
3520, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  QQ )
36 qmulcl 9757 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( B  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
372, 35, 36syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
38 qcn 9754 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( B  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
3937, 38syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
4025, 27, 33, 39sub4d 8431 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
41 qcn 9754 . . . . . . . . . . 11  |-  ( C  e.  QQ  ->  C  e.  CC )
422, 41syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  CC )
4317zcnd 9495 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  CC )
4420zcnd 9495 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  CC )
4542, 43, 44subdid 8485 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) )  =  ( ( C  x.  ( |_ `  ( A  /  C
) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
4645oveq2d 5959 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
47 modqval 10467 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C
) ) ) ) )
481, 2, 3, 47syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) ) )
49 modqval 10467 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
507, 2, 3, 49syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
5148, 50oveq12d 5961 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
5240, 46, 513eqtr4d 2247 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
5352oveq1d 5958 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
5423, 53eqtr3d 2239 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( ( A  mod  C
)  -  ( B  mod  C ) )  mod  C ) )
5554adantr 276 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
56 qsubcl 9758 . . . . . . 7  |-  ( ( ( A  mod  C
)  e.  QQ  /\  ( B  mod  C )  e.  QQ )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
574, 8, 56syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
5857adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  e.  QQ )
592adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  C  e.  QQ )
60 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
616, 10resubcld 8452 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  RR )
62 qre 9745 . . . . . . . 8  |-  ( C  e.  QQ  ->  C  e.  RR )
632, 62syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  RR )
64 modqge0 10475 . . . . . . . . 9  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( B  mod  C
) )
657, 2, 3, 64syl3anc 1249 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( B  mod  C ) )
666, 10subge02d 8609 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  ( B  mod  C )  <->  ( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) ) )
6765, 66mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) )
68 modqlt 10476 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  < 
C )
691, 2, 3, 68syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  <  C )
7061, 6, 63, 67, 69lelttrd 8196 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <  C )
7170adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <  C )
72 modqid 10492 . . . . 5  |-  ( ( ( ( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ  /\  C  e.  QQ )  /\  ( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  /\  ( ( A  mod  C )  -  ( B  mod  C ) )  <  C ) )  ->  ( (
( A  mod  C
)  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7358, 59, 60, 71, 72syl22anc 1250 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( ( A  mod  C )  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7455, 73eqtrd 2237 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
75 modqge0 10475 . . . . . 6  |-  ( ( ( A  -  B
)  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( ( A  -  B )  mod  C
) )
7613, 2, 3, 75syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
7776adantr 276 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
78 simpr 110 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7977, 78breqtrd 4069 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
8074, 79impbida 596 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
8111, 80bitr3d 190 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    =/= wne 2375   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924    x. cmul 7929    < clt 8106    <_ cle 8107    - cmin 8242    / cdiv 8744   ZZcz 9371   QQcq 9739   |_cfl 10409    mod cmo 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-fl 10411  df-mod 10466
This theorem is referenced by:  modqeqmodmin  10537  4sqlem12  12667
  Copyright terms: Public domain W3C validator