| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > modqsubdir | Unicode version | ||
| Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| modqsubdir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 527 | 
. . . . 5
 | |
| 2 | simprl 529 | 
. . . . 5
 | |
| 3 | simprr 531 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | modqcld 10420 | 
. . . 4
 | 
| 5 | qre 9699 | 
. . . 4
 | |
| 6 | 4, 5 | syl 14 | 
. . 3
 | 
| 7 | simplr 528 | 
. . . . 5
 | |
| 8 | 7, 2, 3 | modqcld 10420 | 
. . . 4
 | 
| 9 | qre 9699 | 
. . . 4
 | |
| 10 | 8, 9 | syl 14 | 
. . 3
 | 
| 11 | 6, 10 | subge0d 8562 | 
. 2
 | 
| 12 | qsubcl 9712 | 
. . . . . . . 8
 | |
| 13 | 12 | adantr 276 | 
. . . . . . 7
 | 
| 14 | 3 | gt0ne0d 8539 | 
. . . . . . . . . 10
 | 
| 15 | qdivcl 9717 | 
. . . . . . . . . 10
 | |
| 16 | 1, 2, 14, 15 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 17 | 16 | flqcld 10367 | 
. . . . . . . 8
 | 
| 18 | qdivcl 9717 | 
. . . . . . . . . 10
 | |
| 19 | 7, 2, 14, 18 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 20 | 19 | flqcld 10367 | 
. . . . . . . 8
 | 
| 21 | 17, 20 | zsubcld 9453 | 
. . . . . . 7
 | 
| 22 | modqcyc2 10452 | 
. . . . . . 7
 | |
| 23 | 13, 21, 2, 3, 22 | syl22anc 1250 | 
. . . . . 6
 | 
| 24 | qcn 9708 | 
. . . . . . . . . 10
 | |
| 25 | 1, 24 | syl 14 | 
. . . . . . . . 9
 | 
| 26 | qcn 9708 | 
. . . . . . . . . 10
 | |
| 27 | 7, 26 | syl 14 | 
. . . . . . . . 9
 | 
| 28 | zq 9700 | 
. . . . . . . . . . . 12
 | |
| 29 | 17, 28 | syl 14 | 
. . . . . . . . . . 11
 | 
| 30 | qmulcl 9711 | 
. . . . . . . . . . 11
 | |
| 31 | 2, 29, 30 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 32 | qcn 9708 | 
. . . . . . . . . 10
 | |
| 33 | 31, 32 | syl 14 | 
. . . . . . . . 9
 | 
| 34 | zq 9700 | 
. . . . . . . . . . . 12
 | |
| 35 | 20, 34 | syl 14 | 
. . . . . . . . . . 11
 | 
| 36 | qmulcl 9711 | 
. . . . . . . . . . 11
 | |
| 37 | 2, 35, 36 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 38 | qcn 9708 | 
. . . . . . . . . 10
 | |
| 39 | 37, 38 | syl 14 | 
. . . . . . . . 9
 | 
| 40 | 25, 27, 33, 39 | sub4d 8386 | 
. . . . . . . 8
 | 
| 41 | qcn 9708 | 
. . . . . . . . . . 11
 | |
| 42 | 2, 41 | syl 14 | 
. . . . . . . . . 10
 | 
| 43 | 17 | zcnd 9449 | 
. . . . . . . . . 10
 | 
| 44 | 20 | zcnd 9449 | 
. . . . . . . . . 10
 | 
| 45 | 42, 43, 44 | subdid 8440 | 
. . . . . . . . 9
 | 
| 46 | 45 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 47 | modqval 10416 | 
. . . . . . . . . 10
 | |
| 48 | 1, 2, 3, 47 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 49 | modqval 10416 | 
. . . . . . . . . 10
 | |
| 50 | 7, 2, 3, 49 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 51 | 48, 50 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 52 | 40, 46, 51 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 53 | 52 | oveq1d 5937 | 
. . . . . 6
 | 
| 54 | 23, 53 | eqtr3d 2231 | 
. . . . 5
 | 
| 55 | 54 | adantr 276 | 
. . . 4
 | 
| 56 | qsubcl 9712 | 
. . . . . . 7
 | |
| 57 | 4, 8, 56 | syl2anc 411 | 
. . . . . 6
 | 
| 58 | 57 | adantr 276 | 
. . . . 5
 | 
| 59 | 2 | adantr 276 | 
. . . . 5
 | 
| 60 | simpr 110 | 
. . . . 5
 | |
| 61 | 6, 10 | resubcld 8407 | 
. . . . . . 7
 | 
| 62 | qre 9699 | 
. . . . . . . 8
 | |
| 63 | 2, 62 | syl 14 | 
. . . . . . 7
 | 
| 64 | modqge0 10424 | 
. . . . . . . . 9
 | |
| 65 | 7, 2, 3, 64 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 66 | 6, 10 | subge02d 8564 | 
. . . . . . . 8
 | 
| 67 | 65, 66 | mpbid 147 | 
. . . . . . 7
 | 
| 68 | modqlt 10425 | 
. . . . . . . 8
 | |
| 69 | 1, 2, 3, 68 | syl3anc 1249 | 
. . . . . . 7
 | 
| 70 | 61, 6, 63, 67, 69 | lelttrd 8151 | 
. . . . . 6
 | 
| 71 | 70 | adantr 276 | 
. . . . 5
 | 
| 72 | modqid 10441 | 
. . . . 5
 | |
| 73 | 58, 59, 60, 71, 72 | syl22anc 1250 | 
. . . 4
 | 
| 74 | 55, 73 | eqtrd 2229 | 
. . 3
 | 
| 75 | modqge0 10424 | 
. . . . . 6
 | |
| 76 | 13, 2, 3, 75 | syl3anc 1249 | 
. . . . 5
 | 
| 77 | 76 | adantr 276 | 
. . . 4
 | 
| 78 | simpr 110 | 
. . . 4
 | |
| 79 | 77, 78 | breqtrd 4059 | 
. . 3
 | 
| 80 | 74, 79 | impbida 596 | 
. 2
 | 
| 81 | 11, 80 | bitr3d 190 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 df-mod 10415 | 
| This theorem is referenced by: modqeqmodmin 10486 4sqlem12 12571 | 
| Copyright terms: Public domain | W3C validator |