| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqsubdir | Unicode version | ||
| Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqsubdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . 5
| |
| 3 | simprr 531 |
. . . . 5
| |
| 4 | 1, 2, 3 | modqcld 10495 |
. . . 4
|
| 5 | qre 9766 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simplr 528 |
. . . . 5
| |
| 8 | 7, 2, 3 | modqcld 10495 |
. . . 4
|
| 9 | qre 9766 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 6, 10 | subge0d 8628 |
. 2
|
| 12 | qsubcl 9779 |
. . . . . . . 8
| |
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | 3 | gt0ne0d 8605 |
. . . . . . . . . 10
|
| 15 | qdivcl 9784 |
. . . . . . . . . 10
| |
| 16 | 1, 2, 14, 15 | syl3anc 1250 |
. . . . . . . . 9
|
| 17 | 16 | flqcld 10442 |
. . . . . . . 8
|
| 18 | qdivcl 9784 |
. . . . . . . . . 10
| |
| 19 | 7, 2, 14, 18 | syl3anc 1250 |
. . . . . . . . 9
|
| 20 | 19 | flqcld 10442 |
. . . . . . . 8
|
| 21 | 17, 20 | zsubcld 9520 |
. . . . . . 7
|
| 22 | modqcyc2 10527 |
. . . . . . 7
| |
| 23 | 13, 21, 2, 3, 22 | syl22anc 1251 |
. . . . . 6
|
| 24 | qcn 9775 |
. . . . . . . . . 10
| |
| 25 | 1, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | qcn 9775 |
. . . . . . . . . 10
| |
| 27 | 7, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | zq 9767 |
. . . . . . . . . . . 12
| |
| 29 | 17, 28 | syl 14 |
. . . . . . . . . . 11
|
| 30 | qmulcl 9778 |
. . . . . . . . . . 11
| |
| 31 | 2, 29, 30 | syl2anc 411 |
. . . . . . . . . 10
|
| 32 | qcn 9775 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | zq 9767 |
. . . . . . . . . . . 12
| |
| 35 | 20, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | qmulcl 9778 |
. . . . . . . . . . 11
| |
| 37 | 2, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | qcn 9775 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 25, 27, 33, 39 | sub4d 8452 |
. . . . . . . 8
|
| 41 | qcn 9775 |
. . . . . . . . . . 11
| |
| 42 | 2, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 17 | zcnd 9516 |
. . . . . . . . . 10
|
| 44 | 20 | zcnd 9516 |
. . . . . . . . . 10
|
| 45 | 42, 43, 44 | subdid 8506 |
. . . . . . . . 9
|
| 46 | 45 | oveq2d 5973 |
. . . . . . . 8
|
| 47 | modqval 10491 |
. . . . . . . . . 10
| |
| 48 | 1, 2, 3, 47 | syl3anc 1250 |
. . . . . . . . 9
|
| 49 | modqval 10491 |
. . . . . . . . . 10
| |
| 50 | 7, 2, 3, 49 | syl3anc 1250 |
. . . . . . . . 9
|
| 51 | 48, 50 | oveq12d 5975 |
. . . . . . . 8
|
| 52 | 40, 46, 51 | 3eqtr4d 2249 |
. . . . . . 7
|
| 53 | 52 | oveq1d 5972 |
. . . . . 6
|
| 54 | 23, 53 | eqtr3d 2241 |
. . . . 5
|
| 55 | 54 | adantr 276 |
. . . 4
|
| 56 | qsubcl 9779 |
. . . . . . 7
| |
| 57 | 4, 8, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | 2 | adantr 276 |
. . . . 5
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | 6, 10 | resubcld 8473 |
. . . . . . 7
|
| 62 | qre 9766 |
. . . . . . . 8
| |
| 63 | 2, 62 | syl 14 |
. . . . . . 7
|
| 64 | modqge0 10499 |
. . . . . . . . 9
| |
| 65 | 7, 2, 3, 64 | syl3anc 1250 |
. . . . . . . 8
|
| 66 | 6, 10 | subge02d 8630 |
. . . . . . . 8
|
| 67 | 65, 66 | mpbid 147 |
. . . . . . 7
|
| 68 | modqlt 10500 |
. . . . . . . 8
| |
| 69 | 1, 2, 3, 68 | syl3anc 1250 |
. . . . . . 7
|
| 70 | 61, 6, 63, 67, 69 | lelttrd 8217 |
. . . . . 6
|
| 71 | 70 | adantr 276 |
. . . . 5
|
| 72 | modqid 10516 |
. . . . 5
| |
| 73 | 58, 59, 60, 71, 72 | syl22anc 1251 |
. . . 4
|
| 74 | 55, 73 | eqtrd 2239 |
. . 3
|
| 75 | modqge0 10499 |
. . . . . 6
| |
| 76 | 13, 2, 3, 75 | syl3anc 1250 |
. . . . 5
|
| 77 | 76 | adantr 276 |
. . . 4
|
| 78 | simpr 110 |
. . . 4
| |
| 79 | 77, 78 | breqtrd 4077 |
. . 3
|
| 80 | 74, 79 | impbida 596 |
. 2
|
| 81 | 11, 80 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-q 9761 df-rp 9796 df-fl 10435 df-mod 10490 |
| This theorem is referenced by: modqeqmodmin 10561 4sqlem12 12800 |
| Copyright terms: Public domain | W3C validator |