| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqsubdir | Unicode version | ||
| Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqsubdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . 5
| |
| 3 | simprr 531 |
. . . . 5
| |
| 4 | 1, 2, 3 | modqcld 10437 |
. . . 4
|
| 5 | qre 9716 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simplr 528 |
. . . . 5
| |
| 8 | 7, 2, 3 | modqcld 10437 |
. . . 4
|
| 9 | qre 9716 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 6, 10 | subge0d 8579 |
. 2
|
| 12 | qsubcl 9729 |
. . . . . . . 8
| |
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | 3 | gt0ne0d 8556 |
. . . . . . . . . 10
|
| 15 | qdivcl 9734 |
. . . . . . . . . 10
| |
| 16 | 1, 2, 14, 15 | syl3anc 1249 |
. . . . . . . . 9
|
| 17 | 16 | flqcld 10384 |
. . . . . . . 8
|
| 18 | qdivcl 9734 |
. . . . . . . . . 10
| |
| 19 | 7, 2, 14, 18 | syl3anc 1249 |
. . . . . . . . 9
|
| 20 | 19 | flqcld 10384 |
. . . . . . . 8
|
| 21 | 17, 20 | zsubcld 9470 |
. . . . . . 7
|
| 22 | modqcyc2 10469 |
. . . . . . 7
| |
| 23 | 13, 21, 2, 3, 22 | syl22anc 1250 |
. . . . . 6
|
| 24 | qcn 9725 |
. . . . . . . . . 10
| |
| 25 | 1, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | qcn 9725 |
. . . . . . . . . 10
| |
| 27 | 7, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | zq 9717 |
. . . . . . . . . . . 12
| |
| 29 | 17, 28 | syl 14 |
. . . . . . . . . . 11
|
| 30 | qmulcl 9728 |
. . . . . . . . . . 11
| |
| 31 | 2, 29, 30 | syl2anc 411 |
. . . . . . . . . 10
|
| 32 | qcn 9725 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | zq 9717 |
. . . . . . . . . . . 12
| |
| 35 | 20, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | qmulcl 9728 |
. . . . . . . . . . 11
| |
| 37 | 2, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | qcn 9725 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 25, 27, 33, 39 | sub4d 8403 |
. . . . . . . 8
|
| 41 | qcn 9725 |
. . . . . . . . . . 11
| |
| 42 | 2, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 17 | zcnd 9466 |
. . . . . . . . . 10
|
| 44 | 20 | zcnd 9466 |
. . . . . . . . . 10
|
| 45 | 42, 43, 44 | subdid 8457 |
. . . . . . . . 9
|
| 46 | 45 | oveq2d 5941 |
. . . . . . . 8
|
| 47 | modqval 10433 |
. . . . . . . . . 10
| |
| 48 | 1, 2, 3, 47 | syl3anc 1249 |
. . . . . . . . 9
|
| 49 | modqval 10433 |
. . . . . . . . . 10
| |
| 50 | 7, 2, 3, 49 | syl3anc 1249 |
. . . . . . . . 9
|
| 51 | 48, 50 | oveq12d 5943 |
. . . . . . . 8
|
| 52 | 40, 46, 51 | 3eqtr4d 2239 |
. . . . . . 7
|
| 53 | 52 | oveq1d 5940 |
. . . . . 6
|
| 54 | 23, 53 | eqtr3d 2231 |
. . . . 5
|
| 55 | 54 | adantr 276 |
. . . 4
|
| 56 | qsubcl 9729 |
. . . . . . 7
| |
| 57 | 4, 8, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | 2 | adantr 276 |
. . . . 5
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | 6, 10 | resubcld 8424 |
. . . . . . 7
|
| 62 | qre 9716 |
. . . . . . . 8
| |
| 63 | 2, 62 | syl 14 |
. . . . . . 7
|
| 64 | modqge0 10441 |
. . . . . . . . 9
| |
| 65 | 7, 2, 3, 64 | syl3anc 1249 |
. . . . . . . 8
|
| 66 | 6, 10 | subge02d 8581 |
. . . . . . . 8
|
| 67 | 65, 66 | mpbid 147 |
. . . . . . 7
|
| 68 | modqlt 10442 |
. . . . . . . 8
| |
| 69 | 1, 2, 3, 68 | syl3anc 1249 |
. . . . . . 7
|
| 70 | 61, 6, 63, 67, 69 | lelttrd 8168 |
. . . . . 6
|
| 71 | 70 | adantr 276 |
. . . . 5
|
| 72 | modqid 10458 |
. . . . 5
| |
| 73 | 58, 59, 60, 71, 72 | syl22anc 1250 |
. . . 4
|
| 74 | 55, 73 | eqtrd 2229 |
. . 3
|
| 75 | modqge0 10441 |
. . . . . 6
| |
| 76 | 13, 2, 3, 75 | syl3anc 1249 |
. . . . 5
|
| 77 | 76 | adantr 276 |
. . . 4
|
| 78 | simpr 110 |
. . . 4
| |
| 79 | 77, 78 | breqtrd 4060 |
. . 3
|
| 80 | 74, 79 | impbida 596 |
. 2
|
| 81 | 11, 80 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 |
| This theorem is referenced by: modqeqmodmin 10503 4sqlem12 12596 |
| Copyright terms: Public domain | W3C validator |