ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsubdir Unicode version

Theorem modqsubdir 10285
Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqsubdir  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )

Proof of Theorem modqsubdir
StepHypRef Expression
1 simpll 519 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  QQ )
2 simprl 521 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  QQ )
3 simprr 522 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <  C )
41, 2, 3modqcld 10220 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  QQ )
5 qre 9527 . . . 4  |-  ( ( A  mod  C )  e.  QQ  ->  ( A  mod  C )  e.  RR )
64, 5syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  e.  RR )
7 simplr 520 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  QQ )
87, 2, 3modqcld 10220 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  QQ )
9 qre 9527 . . . 4  |-  ( ( B  mod  C )  e.  QQ  ->  ( B  mod  C )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  e.  RR )
116, 10subge0d 8404 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( B  mod  C
)  <_  ( A  mod  C ) ) )
12 qsubcl 9540 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
1312adantr 274 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  -  B
)  e.  QQ )
143gt0ne0d 8381 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  =/=  0 )
15 qdivcl 9545 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( A  /  C )  e.  QQ )
161, 2, 14, 15syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  /  C
)  e.  QQ )
1716flqcld 10169 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  ZZ )
18 qdivcl 9545 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  C  =/=  0 )  ->  ( B  /  C )  e.  QQ )
197, 2, 14, 18syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  /  C
)  e.  QQ )
2019flqcld 10169 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  ZZ )
2117, 20zsubcld 9285 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )
22 modqcyc2 10252 . . . . . . 7  |-  ( ( ( ( A  -  B )  e.  QQ  /\  ( ( |_ `  ( A  /  C
) )  -  ( |_ `  ( B  /  C ) ) )  e.  ZZ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( (
( A  -  B
)  -  ( C  x.  ( ( |_
`  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( A  -  B
)  mod  C )
)
2313, 21, 2, 3, 22syl22anc 1221 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( A  -  B )  mod 
C ) )
24 qcn 9536 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
251, 24syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  A  e.  CC )
26 qcn 9536 . . . . . . . . . 10  |-  ( B  e.  QQ  ->  B  e.  CC )
277, 26syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  B  e.  CC )
28 zq 9528 . . . . . . . . . . . 12  |-  ( ( |_ `  ( A  /  C ) )  e.  ZZ  ->  ( |_ `  ( A  /  C ) )  e.  QQ )
2917, 28syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  QQ )
30 qmulcl 9539 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( A  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
312, 29, 30syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  QQ )
32 qcn 9536 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( A  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( A  /  C
) ) )  e.  CC )
3331, 32syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  CC )
34 zq 9528 . . . . . . . . . . . 12  |-  ( ( |_ `  ( B  /  C ) )  e.  ZZ  ->  ( |_ `  ( B  /  C ) )  e.  QQ )
3520, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  QQ )
36 qmulcl 9539 . . . . . . . . . . 11  |-  ( ( C  e.  QQ  /\  ( |_ `  ( B  /  C ) )  e.  QQ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
372, 35, 36syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  QQ )
38 qcn 9536 . . . . . . . . . 10  |-  ( ( C  x.  ( |_
`  ( B  /  C ) ) )  e.  QQ  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
3937, 38syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
4025, 27, 33, 39sub4d 8229 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
41 qcn 9536 . . . . . . . . . . 11  |-  ( C  e.  QQ  ->  C  e.  CC )
422, 41syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  CC )
4317zcnd 9281 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( A  /  C ) )  e.  CC )
4420zcnd 9281 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( |_ `  ( B  /  C ) )  e.  CC )
4542, 43, 44subdid 8283 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) )  =  ( ( C  x.  ( |_ `  ( A  /  C
) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
4645oveq2d 5837 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
47 modqval 10216 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C
) ) ) ) )
481, 2, 3, 47syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) ) )
49 modqval 10216 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
507, 2, 3, 49syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( B  mod  C
)  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
5148, 50oveq12d 5839 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
5240, 46, 513eqtr4d 2200 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
5352oveq1d 5836 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( ( A  -  B )  -  ( C  x.  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) ) ) )  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
5423, 53eqtr3d 2192 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( ( A  mod  C
)  -  ( B  mod  C ) )  mod  C ) )
5554adantr 274 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
56 qsubcl 9540 . . . . . . 7  |-  ( ( ( A  mod  C
)  e.  QQ  /\  ( B  mod  C )  e.  QQ )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
574, 8, 56syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ )
5857adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  e.  QQ )
592adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  C  e.  QQ )
60 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
616, 10resubcld 8250 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  e.  RR )
62 qre 9527 . . . . . . . 8  |-  ( C  e.  QQ  ->  C  e.  RR )
632, 62syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  ->  C  e.  RR )
64 modqge0 10224 . . . . . . . . 9  |-  ( ( B  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( B  mod  C
) )
657, 2, 3, 64syl3anc 1220 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( B  mod  C ) )
666, 10subge02d 8406 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  ( B  mod  C )  <->  ( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) ) )
6765, 66mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) )
68 modqlt 10225 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  ( A  mod  C )  < 
C )
691, 2, 3, 68syl3anc 1220 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( A  mod  C
)  <  C )
7061, 6, 63, 67, 69lelttrd 7994 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( A  mod  C )  -  ( B  mod  C ) )  <  C )
7170adantr 274 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <  C )
72 modqid 10241 . . . . 5  |-  ( ( ( ( ( A  mod  C )  -  ( B  mod  C ) )  e.  QQ  /\  C  e.  QQ )  /\  ( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  /\  ( ( A  mod  C )  -  ( B  mod  C ) )  <  C ) )  ->  ( (
( A  mod  C
)  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7358, 59, 60, 71, 72syl22anc 1221 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( ( A  mod  C )  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7455, 73eqtrd 2190 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
75 modqge0 10224 . . . . . 6  |-  ( ( ( A  -  B
)  e.  QQ  /\  C  e.  QQ  /\  0  <  C )  ->  0  <_  ( ( A  -  B )  mod  C
) )
7613, 2, 3, 75syl3anc 1220 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
7776adantr 274 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
78 simpr 109 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7977, 78breqtrd 3990 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
8074, 79impbida 586 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  <-> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
8111, 80bitr3d 189 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  < 
C ) )  -> 
( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    =/= wne 2327   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   RRcr 7725   0cc0 7726    x. cmul 7731    < clt 7906    <_ cle 7907    - cmin 8040    / cdiv 8539   ZZcz 9161   QQcq 9521   |_cfl 10160    mod cmo 10214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-n0 9085  df-z 9162  df-q 9522  df-rp 9554  df-fl 10162  df-mod 10215
This theorem is referenced by:  modqeqmodmin  10286
  Copyright terms: Public domain W3C validator