| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqsubdir | Unicode version | ||
| Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqsubdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . 5
| |
| 3 | simprr 531 |
. . . . 5
| |
| 4 | 1, 2, 3 | modqcld 10545 |
. . . 4
|
| 5 | qre 9816 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simplr 528 |
. . . . 5
| |
| 8 | 7, 2, 3 | modqcld 10545 |
. . . 4
|
| 9 | qre 9816 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 6, 10 | subge0d 8678 |
. 2
|
| 12 | qsubcl 9829 |
. . . . . . . 8
| |
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | 3 | gt0ne0d 8655 |
. . . . . . . . . 10
|
| 15 | qdivcl 9834 |
. . . . . . . . . 10
| |
| 16 | 1, 2, 14, 15 | syl3anc 1271 |
. . . . . . . . 9
|
| 17 | 16 | flqcld 10492 |
. . . . . . . 8
|
| 18 | qdivcl 9834 |
. . . . . . . . . 10
| |
| 19 | 7, 2, 14, 18 | syl3anc 1271 |
. . . . . . . . 9
|
| 20 | 19 | flqcld 10492 |
. . . . . . . 8
|
| 21 | 17, 20 | zsubcld 9570 |
. . . . . . 7
|
| 22 | modqcyc2 10577 |
. . . . . . 7
| |
| 23 | 13, 21, 2, 3, 22 | syl22anc 1272 |
. . . . . 6
|
| 24 | qcn 9825 |
. . . . . . . . . 10
| |
| 25 | 1, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | qcn 9825 |
. . . . . . . . . 10
| |
| 27 | 7, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | zq 9817 |
. . . . . . . . . . . 12
| |
| 29 | 17, 28 | syl 14 |
. . . . . . . . . . 11
|
| 30 | qmulcl 9828 |
. . . . . . . . . . 11
| |
| 31 | 2, 29, 30 | syl2anc 411 |
. . . . . . . . . 10
|
| 32 | qcn 9825 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | zq 9817 |
. . . . . . . . . . . 12
| |
| 35 | 20, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | qmulcl 9828 |
. . . . . . . . . . 11
| |
| 37 | 2, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | qcn 9825 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 25, 27, 33, 39 | sub4d 8502 |
. . . . . . . 8
|
| 41 | qcn 9825 |
. . . . . . . . . . 11
| |
| 42 | 2, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 17 | zcnd 9566 |
. . . . . . . . . 10
|
| 44 | 20 | zcnd 9566 |
. . . . . . . . . 10
|
| 45 | 42, 43, 44 | subdid 8556 |
. . . . . . . . 9
|
| 46 | 45 | oveq2d 6016 |
. . . . . . . 8
|
| 47 | modqval 10541 |
. . . . . . . . . 10
| |
| 48 | 1, 2, 3, 47 | syl3anc 1271 |
. . . . . . . . 9
|
| 49 | modqval 10541 |
. . . . . . . . . 10
| |
| 50 | 7, 2, 3, 49 | syl3anc 1271 |
. . . . . . . . 9
|
| 51 | 48, 50 | oveq12d 6018 |
. . . . . . . 8
|
| 52 | 40, 46, 51 | 3eqtr4d 2272 |
. . . . . . 7
|
| 53 | 52 | oveq1d 6015 |
. . . . . 6
|
| 54 | 23, 53 | eqtr3d 2264 |
. . . . 5
|
| 55 | 54 | adantr 276 |
. . . 4
|
| 56 | qsubcl 9829 |
. . . . . . 7
| |
| 57 | 4, 8, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | 2 | adantr 276 |
. . . . 5
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | 6, 10 | resubcld 8523 |
. . . . . . 7
|
| 62 | qre 9816 |
. . . . . . . 8
| |
| 63 | 2, 62 | syl 14 |
. . . . . . 7
|
| 64 | modqge0 10549 |
. . . . . . . . 9
| |
| 65 | 7, 2, 3, 64 | syl3anc 1271 |
. . . . . . . 8
|
| 66 | 6, 10 | subge02d 8680 |
. . . . . . . 8
|
| 67 | 65, 66 | mpbid 147 |
. . . . . . 7
|
| 68 | modqlt 10550 |
. . . . . . . 8
| |
| 69 | 1, 2, 3, 68 | syl3anc 1271 |
. . . . . . 7
|
| 70 | 61, 6, 63, 67, 69 | lelttrd 8267 |
. . . . . 6
|
| 71 | 70 | adantr 276 |
. . . . 5
|
| 72 | modqid 10566 |
. . . . 5
| |
| 73 | 58, 59, 60, 71, 72 | syl22anc 1272 |
. . . 4
|
| 74 | 55, 73 | eqtrd 2262 |
. . 3
|
| 75 | modqge0 10549 |
. . . . . 6
| |
| 76 | 13, 2, 3, 75 | syl3anc 1271 |
. . . . 5
|
| 77 | 76 | adantr 276 |
. . . 4
|
| 78 | simpr 110 |
. . . 4
| |
| 79 | 77, 78 | breqtrd 4108 |
. . 3
|
| 80 | 74, 79 | impbida 598 |
. 2
|
| 81 | 11, 80 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 df-mod 10540 |
| This theorem is referenced by: modqeqmodmin 10611 4sqlem12 12920 |
| Copyright terms: Public domain | W3C validator |