ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 Unicode version

Theorem modqadd1 10165
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a  |-  ( ph  ->  A  e.  QQ )
modqadd1.b  |-  ( ph  ->  B  e.  QQ )
modqadd1.c  |-  ( ph  ->  C  e.  QQ )
modqadd1.dq  |-  ( ph  ->  D  e.  QQ )
modqadd1.dgt0  |-  ( ph  ->  0  <  D )
modqadd1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqadd1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqadd1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqadd1.dq . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqadd1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 10128 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1217 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqadd1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 10128 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1217 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2155 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 5789 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
1210, 11syl6bi 162 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) ) )
13 qcn 9453 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  A  e.  CC )
15 modqadd1.c . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
16 qcn 9453 . . . . . . 7  |-  ( C  e.  QQ  ->  C  e.  CC )
1715, 16syl 14 . . . . . 6  |-  ( ph  ->  C  e.  CC )
18 qcn 9453 . . . . . . . 8  |-  ( D  e.  QQ  ->  D  e.  CC )
193, 18syl 14 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
204gt0ne0d 8298 . . . . . . . . . 10  |-  ( ph  ->  D  =/=  0 )
21 qdivcl 9462 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
222, 3, 20, 21syl3anc 1217 . . . . . . . . 9  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2322flqcld 10081 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2423zcnd 9198 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2519, 24mulcld 7810 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2614, 17, 25addsubd 8118 . . . . 5  |-  ( ph  ->  ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
) )
27 qcn 9453 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
287, 27syl 14 . . . . . 6  |-  ( ph  ->  B  e.  CC )
29 qdivcl 9462 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
307, 3, 20, 29syl3anc 1217 . . . . . . . . 9  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3130flqcld 10081 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3231zcnd 9198 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3319, 32mulcld 7810 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3428, 17, 33addsubd 8118 . . . . 5  |-  ( ph  ->  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) )
3526, 34eqeq12d 2155 . . . 4  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) ) )
3612, 35sylibrd 168 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
37 oveq1 5789 . . . 4  |-  ( ( ( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D ) )
38 qaddcl 9454 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  +  C
)  e.  QQ )
392, 15, 38syl2anc 409 . . . . . 6  |-  ( ph  ->  ( A  +  C
)  e.  QQ )
40 modqcyc2 10164 . . . . . 6  |-  ( ( ( ( A  +  C )  e.  QQ  /\  ( |_ `  ( A  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4139, 23, 3, 4, 40syl22anc 1218 . . . . 5  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D )  =  ( ( A  +  C )  mod 
D ) )
42 qaddcl 9454 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  +  C
)  e.  QQ )
437, 15, 42syl2anc 409 . . . . . 6  |-  ( ph  ->  ( B  +  C
)  e.  QQ )
44 modqcyc2 10164 . . . . . 6  |-  ( ( ( ( B  +  C )  e.  QQ  /\  ( |_ `  ( B  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
4543, 31, 3, 4, 44syl22anc 1218 . . . . 5  |-  ( ph  ->  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D )  =  ( ( B  +  C )  mod 
D ) )
4641, 45eqeq12d 2155 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D
)  =  ( ( ( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  <->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C
)  mod  D )
) )
4737, 46syl5ib 153 . . 3  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) ) )
4836, 47syld 45 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) ) )
491, 48mpd 13 1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481    =/= wne 2309   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957    / cdiv 8456   ZZcz 9078   QQcq 9438   |_cfl 10072    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127
This theorem is referenced by:  modqaddabs  10166  modqaddmod  10167  modqadd12d  10184  modqaddmulmod  10195  moddvds  11538
  Copyright terms: Public domain W3C validator