ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 Unicode version

Theorem modqadd1 10583
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a  |-  ( ph  ->  A  e.  QQ )
modqadd1.b  |-  ( ph  ->  B  e.  QQ )
modqadd1.c  |-  ( ph  ->  C  e.  QQ )
modqadd1.dq  |-  ( ph  ->  D  e.  QQ )
modqadd1.dgt0  |-  ( ph  ->  0  <  D )
modqadd1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqadd1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqadd1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqadd1.dq . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqadd1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 10546 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1271 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqadd1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 10546 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1271 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2244 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 6008 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
1210, 11biimtrdi 163 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) ) )
13 qcn 9829 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  A  e.  CC )
15 modqadd1.c . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
16 qcn 9829 . . . . . . 7  |-  ( C  e.  QQ  ->  C  e.  CC )
1715, 16syl 14 . . . . . 6  |-  ( ph  ->  C  e.  CC )
18 qcn 9829 . . . . . . . 8  |-  ( D  e.  QQ  ->  D  e.  CC )
193, 18syl 14 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
204gt0ne0d 8659 . . . . . . . . . 10  |-  ( ph  ->  D  =/=  0 )
21 qdivcl 9838 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
222, 3, 20, 21syl3anc 1271 . . . . . . . . 9  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2322flqcld 10497 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2423zcnd 9570 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2519, 24mulcld 8167 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2614, 17, 25addsubd 8478 . . . . 5  |-  ( ph  ->  ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
) )
27 qcn 9829 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
287, 27syl 14 . . . . . 6  |-  ( ph  ->  B  e.  CC )
29 qdivcl 9838 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
307, 3, 20, 29syl3anc 1271 . . . . . . . . 9  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3130flqcld 10497 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3231zcnd 9570 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3319, 32mulcld 8167 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3428, 17, 33addsubd 8478 . . . . 5  |-  ( ph  ->  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) )
3526, 34eqeq12d 2244 . . . 4  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) ) )
3612, 35sylibrd 169 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
37 oveq1 6008 . . . 4  |-  ( ( ( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D ) )
38 qaddcl 9830 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  +  C
)  e.  QQ )
392, 15, 38syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  +  C
)  e.  QQ )
40 modqcyc2 10582 . . . . . 6  |-  ( ( ( ( A  +  C )  e.  QQ  /\  ( |_ `  ( A  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4139, 23, 3, 4, 40syl22anc 1272 . . . . 5  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D )  =  ( ( A  +  C )  mod 
D ) )
42 qaddcl 9830 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  +  C
)  e.  QQ )
437, 15, 42syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  +  C
)  e.  QQ )
44 modqcyc2 10582 . . . . . 6  |-  ( ( ( ( B  +  C )  e.  QQ  /\  ( |_ `  ( B  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
4543, 31, 3, 4, 44syl22anc 1272 . . . . 5  |-  ( ph  ->  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D )  =  ( ( B  +  C )  mod 
D ) )
4641, 45eqeq12d 2244 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D
)  =  ( ( ( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  <->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C
)  mod  D )
) )
4737, 46imbitrid 154 . . 3  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) ) )
4836, 47syld 45 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) ) )
491, 48mpd 13 1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002    x. cmul 8004    < clt 8181    - cmin 8317    / cdiv 8819   ZZcz 9446   QQcq 9814   |_cfl 10488    mod cmo 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490  df-mod 10545
This theorem is referenced by:  modqaddabs  10584  modqaddmod  10585  modqadd12d  10602  modqaddmulmod  10613  moddvds  12310  modsubi  12942  lgsvalmod  15698  lgsmod  15705  lgsne0  15717  lgseisen  15753
  Copyright terms: Public domain W3C validator