| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqadd1 | Unicode version | ||
| Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqadd1.a |
|
| modqadd1.b |
|
| modqadd1.c |
|
| modqadd1.dq |
|
| modqadd1.dgt0 |
|
| modqadd1.ab |
|
| Ref | Expression |
|---|---|
| modqadd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqadd1.ab |
. 2
| |
| 2 | modqadd1.a |
. . . . . . 7
| |
| 3 | modqadd1.dq |
. . . . . . 7
| |
| 4 | modqadd1.dgt0 |
. . . . . . 7
| |
| 5 | modqval 10469 |
. . . . . . 7
| |
| 6 | 2, 3, 4, 5 | syl3anc 1250 |
. . . . . 6
|
| 7 | modqadd1.b |
. . . . . . 7
| |
| 8 | modqval 10469 |
. . . . . . 7
| |
| 9 | 7, 3, 4, 8 | syl3anc 1250 |
. . . . . 6
|
| 10 | 6, 9 | eqeq12d 2220 |
. . . . 5
|
| 11 | oveq1 5951 |
. . . . 5
| |
| 12 | 10, 11 | biimtrdi 163 |
. . . 4
|
| 13 | qcn 9755 |
. . . . . . 7
| |
| 14 | 2, 13 | syl 14 |
. . . . . 6
|
| 15 | modqadd1.c |
. . . . . . 7
| |
| 16 | qcn 9755 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | qcn 9755 |
. . . . . . . 8
| |
| 19 | 3, 18 | syl 14 |
. . . . . . 7
|
| 20 | 4 | gt0ne0d 8585 |
. . . . . . . . . 10
|
| 21 | qdivcl 9764 |
. . . . . . . . . 10
| |
| 22 | 2, 3, 20, 21 | syl3anc 1250 |
. . . . . . . . 9
|
| 23 | 22 | flqcld 10420 |
. . . . . . . 8
|
| 24 | 23 | zcnd 9496 |
. . . . . . 7
|
| 25 | 19, 24 | mulcld 8093 |
. . . . . 6
|
| 26 | 14, 17, 25 | addsubd 8404 |
. . . . 5
|
| 27 | qcn 9755 |
. . . . . . 7
| |
| 28 | 7, 27 | syl 14 |
. . . . . 6
|
| 29 | qdivcl 9764 |
. . . . . . . . . 10
| |
| 30 | 7, 3, 20, 29 | syl3anc 1250 |
. . . . . . . . 9
|
| 31 | 30 | flqcld 10420 |
. . . . . . . 8
|
| 32 | 31 | zcnd 9496 |
. . . . . . 7
|
| 33 | 19, 32 | mulcld 8093 |
. . . . . 6
|
| 34 | 28, 17, 33 | addsubd 8404 |
. . . . 5
|
| 35 | 26, 34 | eqeq12d 2220 |
. . . 4
|
| 36 | 12, 35 | sylibrd 169 |
. . 3
|
| 37 | oveq1 5951 |
. . . 4
| |
| 38 | qaddcl 9756 |
. . . . . . 7
| |
| 39 | 2, 15, 38 | syl2anc 411 |
. . . . . 6
|
| 40 | modqcyc2 10505 |
. . . . . 6
| |
| 41 | 39, 23, 3, 4, 40 | syl22anc 1251 |
. . . . 5
|
| 42 | qaddcl 9756 |
. . . . . . 7
| |
| 43 | 7, 15, 42 | syl2anc 411 |
. . . . . 6
|
| 44 | modqcyc2 10505 |
. . . . . 6
| |
| 45 | 43, 31, 3, 4, 44 | syl22anc 1251 |
. . . . 5
|
| 46 | 41, 45 | eqeq12d 2220 |
. . . 4
|
| 47 | 37, 46 | imbitrid 154 |
. . 3
|
| 48 | 36, 47 | syld 45 |
. 2
|
| 49 | 1, 48 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 df-mod 10468 |
| This theorem is referenced by: modqaddabs 10507 modqaddmod 10508 modqadd12d 10525 modqaddmulmod 10536 moddvds 12110 modsubi 12742 lgsvalmod 15496 lgsmod 15503 lgsne0 15515 lgseisen 15551 |
| Copyright terms: Public domain | W3C validator |