Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icnpimaex | Unicode version |
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.) |
Ref | Expression |
---|---|
icnpimaex | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 990 | . 2 TopOn TopOn | |
2 | eleq2 2218 | . . . 4 | |
3 | sseq2 3148 | . . . . . 6 | |
4 | 3 | anbi2d 460 | . . . . 5 |
5 | 4 | rexbidv 2455 | . . . 4 |
6 | 2, 5 | imbi12d 233 | . . 3 |
7 | simpr1 988 | . . . . 5 TopOn TopOn | |
8 | iscnp 12546 | . . . . . 6 TopOn TopOn | |
9 | 8 | adantr 274 | . . . . 5 TopOn TopOn |
10 | 7, 9 | mpbid 146 | . . . 4 TopOn TopOn |
11 | 10 | simprd 113 | . . 3 TopOn TopOn |
12 | simpr2 989 | . . 3 TopOn TopOn | |
13 | 6, 11, 12 | rspcdva 2818 | . 2 TopOn TopOn |
14 | 1, 13 | mpd 13 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wral 2432 wrex 2433 wss 3098 cima 4582 wf 5159 cfv 5163 (class class class)co 5814 TopOnctopon 12355 ccnp 12533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-map 6584 df-top 12343 df-topon 12356 df-cnp 12536 |
This theorem is referenced by: iscnp4 12565 cnpnei 12566 cnptopco 12569 cncnp 12577 cnptopresti 12585 lmtopcnp 12597 txcnp 12618 |
Copyright terms: Public domain | W3C validator |