ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icnpimaex Unicode version

Theorem icnpimaex 14390
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
icnpimaex  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) )
Distinct variable groups:    x, A    x, F    x, J    x, K    x, P    x, X    x, Y

Proof of Theorem icnpimaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr3 1007 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F `  P )  e.  A
)
2 eleq2 2257 . . . 4  |-  ( y  =  A  ->  (
( F `  P
)  e.  y  <->  ( F `  P )  e.  A
) )
3 sseq2 3204 . . . . . 6  |-  ( y  =  A  ->  (
( F " x
)  C_  y  <->  ( F " x )  C_  A
) )
43anbi2d 464 . . . . 5  |-  ( y  =  A  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
54rexbidv 2495 . . . 4  |-  ( y  =  A  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
62, 5imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
7 simpr1 1005 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
8 iscnp 14378 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
98adantr 276 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
107, 9mpbid 147 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1110simprd 114 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )
12 simpr2 1006 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  A  e.  K )
136, 11, 12rspcdva 2870 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( ( F `  P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) )
141, 13mpd 13 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   "cima 4663   -->wf 5251   ` cfv 5255  (class class class)co 5919  TopOnctopon 14189    CnP ccnp 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-top 14177  df-topon 14190  df-cnp 14368
This theorem is referenced by:  iscnp4  14397  cnpnei  14398  cnptopco  14401  cncnp  14409  cnptopresti  14417  lmtopcnp  14429  txcnp  14450
  Copyright terms: Public domain W3C validator