Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icnpimaex | Unicode version |
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.) |
Ref | Expression |
---|---|
icnpimaex | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 995 | . 2 TopOn TopOn | |
2 | eleq2 2230 | . . . 4 | |
3 | sseq2 3166 | . . . . . 6 | |
4 | 3 | anbi2d 460 | . . . . 5 |
5 | 4 | rexbidv 2467 | . . . 4 |
6 | 2, 5 | imbi12d 233 | . . 3 |
7 | simpr1 993 | . . . . 5 TopOn TopOn | |
8 | iscnp 12839 | . . . . . 6 TopOn TopOn | |
9 | 8 | adantr 274 | . . . . 5 TopOn TopOn |
10 | 7, 9 | mpbid 146 | . . . 4 TopOn TopOn |
11 | 10 | simprd 113 | . . 3 TopOn TopOn |
12 | simpr2 994 | . . 3 TopOn TopOn | |
13 | 6, 11, 12 | rspcdva 2835 | . 2 TopOn TopOn |
14 | 1, 13 | mpd 13 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 cima 4607 wf 5184 cfv 5188 (class class class)co 5842 TopOnctopon 12648 ccnp 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12636 df-topon 12649 df-cnp 12829 |
This theorem is referenced by: iscnp4 12858 cnpnei 12859 cnptopco 12862 cncnp 12870 cnptopresti 12878 lmtopcnp 12890 txcnp 12911 |
Copyright terms: Public domain | W3C validator |